Corrado Lattanzio

Associate Professor

Coppito 1, Room 1052
+39 0862 434707

Research interests

Partial Differential Equations of Hyperbolic type 

Hyperbolic Systems of Conservation Laws 

Relaxation Limits and Asymptotic Behavior of Conservation Laws

Microscopic-Macroscopic Traffic Flow Models

Complete list of papers

Recent events

Tenth meeting on Hyperbolic Conservation Laws: recent results and research perspectives, L'Aquila (Italy), July 11 - 12, 2013

Fourteenth International Conference on "Hyperbolic Problems: Theory, Numerics and Applications" (HYP2012), Padova (Italy), June 25 - 29, 2012

Mathematics of Traffic Flow Modeling, Estimation and Control, Los Angeles, California (USA), December 7 - 9, 2011

Thirteenth International Conference on "Hyperbolic Problems: Theory, Numerics and Applications" (HYP2010), Beijing (China), June 15 - 19, 2010

Kinetic and Mean-field models in the Socio-Economic Sciences, Edinburgh (Scotland), July 27 - 31, 2009

International Conference on Applied Analysis and Scientific Computations, Shanghai (China), June 25 - 28, 2009

Math links

MathSciNet Home Page 

Conservation Laws Preprint Server


  1. C. Lattanzio and A.E. Tzavaras. Relative entropy in diffusive relaxation. SIAM J. Math. Anal., 45(3): 1563-1584, 2013
  2. I. Gasser, C. Lattanzio and A. Maurizi. Vehicular traffic flow dynamics on a bus route. Multiscale Model. Simul., 11(3): 925-942, 2013
  3. S.-Y. Ha, M.-J. Kang, C. Lattanzio and B. Rubino. A class of interacting particle systems on the infinite cylinder with flocking phenomena. Math. Models Methods Appl. Sci., 22(7): 1250008 (25 pages), 2012
  4. S.-Y. Ha, C. Lattanzio, B. Rubino and M. Slemrod. Flocking and synchronization of particle models. Quart. Appl. Math., 69(1): 91-103, 2011
  5. C. Lattanzio, A. Maurizi and B. Piccoli. Moving bottlenecks in car traffic flow: a PDE-ODE coupled model. SIAM J. Math. Anal., 43(1): 50-67, 2011
  6. C. Lattanzio and B. Piccoli. Coupling of microscopic and macroscopic traffic models at boundaries. Math. Models Methods Appl. Sci., 20(12): 2349-2370, 2010
  7. C. Lattanzio, A. Maurizi and B. Piccoli. Modeling and simulation of vehicular traffic flow with moving bottlenecks. In F. Pistella and R. M. Spitaleri, editors, MASCOT09 Proceedings, volume 15 of IMACS Series in Computational and Applied Mathematics, pages 181–190, Rome, 2010
  8. C. Lattanzio, C. Mascia, T. Nguyen, R.G. Plaza and K. Zumbrun. Stability of scalar radiative shock profiles. SIAM J. Math. Anal., 41(6): 2165-2206, 2009
  9. D. Donatelli and C. Lattanzio. On the diffusive stress relaxation for multidimensional viscoelasticity. Commun. Pure Appl. Anal., 8(2): 645-654, 2009
  10. C. Lattanzio, C. Mascia and D. Serre. Nonlinear hyperbolic-elliptic coupled systems arising in radiation dynamics. In Hyperbolic Problems: Theory, Numerics, Applications, 661-669, S. Benzoni-Gavage and D. Serre editors, Springer, Berlin, 2008
  11. J.A. Carrillo, M. Di Francesco and C. Lattanzio. Contractivity and asymptotics in Wasserstein metrics for viscous nonlinear scalar conservation laws. Proceedings of the Joint SIMAI-SMAI-SMF-UMI Meeting Mathematics and its applications (Torino, 2006). Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8)10:277-292, 2007
  12. C. Lattanzio, C. Mascia and D. Serre. Shock waves for radiative hyperbolic-elliptic systems. Indiana Univ. Math. J., 56:2601--2640, 2007
  13. J.A. Carrillo, M. Di Francesco and C. Lattanzio. Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws. J. Differential Equations, 231:425-458, 2006
  14. C. Lattanzio. Diffusive relaxation limit for hyperbolic systems. Proceedings of the 6th European Conference on Numerical Mathematics and Advanced Applications – ENUMATH 2005 (Santiago de Compostela, 2005). Numerical Mathematics and Advanced Applications, 396-403, 2006
  15. M. Di Francesco and C. Lattanzio. Optimal L1 decay rate to diffusion waves for the Hamer model of radiating gases. Appl. Math. Lett., 19:1046-1052, 2006
  16. C. Lattanzio and A.E. Tzavaras. Structural properties of stress relaxation and convergence from viscoelasticity to polyconvex elastodynamics. Arch. Ration. Mech. Anal., 180:449-492, 2006
  17. M. Di Francesco and C. Lattanzio. Diffusive relaxation 3x3 model for a system of viscoelasticity. Asymptot. Anal., 40:235-253, 2004
  18. C. Lattanzio and B. Rubino. Asymptotic Behavior and Strong Convergence for Hyperbolic Systems of Conservation Laws with Damping. Quart. Appl. Math., 62(3):529-540, 2004
  19. C. Lattanzio and P. Marcati. Global Well-Posedness and Relaxation Limits of a Model for Radiating Gas. J. Differential Equations, 190:439-465, 2003
  20. C. Lattanzio and R. Natalini. Convergence of Diffusive BGK Approximations for Nonlinear Strongly Parabolic Systems. Proc. Roy. Soc. Edinburgh Sect. A, 132(2):341-358, 2002
  21. C. Lattanzio and D. Serre. Convergence of a Relaxation Scheme for Hyperbolic Systems of Conservation Laws. Numer. Math., 88:121-134, 2001
  22. C. Lattanzio and W.-A. Yong. Hyperbolic-Parabolic Singular Limits for First-Order Nonlinear Systems. Comm. Partial Differential Equations, 26:939-964, 2001
  23. C. Lattanzio. On the 3-D Bipolar Isentropic Euler-Poisson Model for Semiconductors and the Drift-Diffusion Limit. Math. Models Methods Appl. Sci., 10:351-360, 2000
  24. C. Lattanzio and P. Marcati. Asymptotic Stability of Plane Diffusion Waves for the 2-D Quasilinear Wave Equation. Contemp. Math., 238:163-182, 1999
  25. C. Lattanzio and P. Marcati. The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors. Discrete Contin. Dynam. Systems, 5(2):449-455, 1999
  26. C. Lattanzio and P. Marcati. The Zero Relaxation Limit for 2x2 Hyperbolic Systems. Nonlinear Anal., 38:375-389, 1999
  27. C. Lattanzio and D. Serre. Shock Layers Interactions for a Relaxation Approximation to Conservation Laws. NoDEA Nonlinear Differential Equations Appl., 6:319-340, 1999
  28. C. Lattanzio and P. Marcati. Diffusive Profile for the 2-D Nonlinear Damped Wave Equation. Proceedings of the IX International Conference on Waves and Stability in Continuous Media (Bari, 1997). Rend. Circ. Mat. Palermo (2) Suppl., 57:293-302, 1998
  29. C. Lattanzio and P. Marcati. The Zero Relaxation Limit for the Hydrodynamic Whitham Traffic Flow Model. J. Differential Equations, 141:150-178, 1997