An Architecture Framework for Experimentations with Self-Adaptive Cyber-Physical Systems

Michal Kit
Ilias Gerostathopoulos
Tomas Bures
Petr Hnetynka
Frantisek Plasil

iliasg@d3s.mff.cuni.cz
Smart Cyber-Physical Systems

• Open-ended: no strict system boundaries
• Decentralized
• Physical world
 ▪ Distribution
 ▪ Mobility
• Communication
 ▪ WiFi, 3G/4G, but also MANETS, VANETS etc.

How can we endow such systems with self-adaptive and self-organizing capabilities?
Self-adaptation in smart CPS is hard
... especially when combined with dependability.

• No global state
• Dynamic physical structure
• Unstable connections: no communication guarantees
• Communication delays: data becomes obsolete
• Inherent dynamism stemming from external uncertainty and openness
• Emergent behavior
Example: E-mobility

POI: Work
Time: 7AM-4PM

POI: Cinema
Time: 2PM-4PM

POI: Shopping
Time: 4PM-6PM

POI: Shopping
Time: 4PM-6PM

POI: Home
Time: 6:30PM

POI: Home
Time: 6:45PM
Systematic Experimentation

To build self-adaptive smart CPS we need to first experiment with different adaptation approaches.

An **experimentation framework** should have:

- **Suitable abstractions**
 - Goals, agents/components, component grouping
- **Simulation** capabilities
 - Network communication (including ad-hoc networks)
 - Environment behavior
DEECo

Component framework for self-adaptive smart CPS

- Suitable abstractions
 - Architecture: autonomous **components & ensembles**
 - Requirements: **invariants**

- Simulation capabilities
 - Network-accurate communication (OMNET++)
 - Agent-based simulations of the environment (MATSim)

jDEECo: **Java-based** implementation of DEECo

- Based on internal Java DSL (Java annotations)
jDEECo Features

An Architecture Framework for Experimentations with Self-Adaptive Cyber-Physical Systems
DEECo – Architecture Abstractions
DEECo – Architecture Abstractions

(component) Vehicle
- schedule
- route
...

(component) ParkingLot
- position
- freePlaces
...

(component) Vehicle
- schedule
- route
...

Component

Processes

Knowledge

position
freePlaces
...

Ilias Gerostathopoulos, SEAMS ‘15, 18.05.2015

The Framework for Experimentations with Self-Adaptive Cyber-Physical Systems
Component Vehicle = {
 position: IPosition
 availableParkingLots: IParkingLot[]
 route: IRoute
 schedule: ISchedule
 ...

 process updatePlan {
 function = updatePlan
 inputKnowledge = [position, availableParkingLots, ...]
 outputKnowledge = [route, ...]
 scheduling = periodic(1s)
 ...
 }
}

Component ParkingLot = {
 freePlaces: Int
 position: IPosition
 ...

 process updateFreePlaces {
 ...
 }
}
DEECo – Architecture Abstractions

Ensemble

- Membership Condition
- Holds

Knowledge Exchange
An Architecture Framework for Experimentations with Self-Adaptive Cyber-Physical Systems

DEECo – Architecture Abstractions

(ensemble)
AvailableParkingLotsCloseToDestination

Ensemble AvailableParkingLotsCloseToDestination {
 v: IVehicle
 p: IParkingLot

 membership :
 proximity(p.position, v.route) <= DIST_THR
 && p.freePlaces >= FREE_PLACES_THR

 knowledge exchange {
 v.availablePakingLots <- p.id
 }
}
Ensemble `VehiclesCloseByWithTrafficUpdate` {

v1: IVehicle
v2: IVehicle

membership :
proximity(v1.position, v2.position) \(\leq\) DIST_THR

knowledge exchange {
 v1.trafficInfo \(-\)
 v2.trafficInfo
}

AvailableParkingLotsCloseToDestination

AvailableParkingLotsCloseToDestination

AvailableParkingLotsCloseToDestination
DEECo – Architecture Abstractions

(ensemble)
VehiclesCloseByWithTrafficUpdate

(ensemble)
AvailableParkingLotsCloseToDestination

AvailableParkingLotsCloseToDestination

(ensemble)
AvailableParkingLotsCloseToDestination
DEECo – Architecture Abstractions

(ensemble)
VehiclesCloseByWithTrafficUpdate

(ensemble)
AvailableParkingLotsCloseToDestination

AvailableParkingLotsCloseToDestination
Requirements Abstractions

Invariants capture operational normalcy at every time instant.

Decomposition of invariants forms design trees:
- Akin to goal-oriented requirements elaboration.

Leaf invariants are **operationalized** via:
- Component processes and knowledge exchange functions.
- Monitors.

Alternative decompositions provide alternative system realizations:
- Used at runtime to drive **architecture reconfiguration**.
Support for Goal-Oriented Design

GMF-based designer
Structural checking
Code generation (jDEECo)
EMF model used for runtime requirements reflection
Support for Network Simulations

OMNeT++

Detailed network simulator

Rich library of communication models

Rich library of hardware models
Support for Environment Simulations

Agent-Based Traffic Simulator

Simulates people mobility according to their plans
Support for Visualization

Customizable **map-based** visualization
Inspection of ensemble forming/disbanding
Conclusions

Self-adaptation is hard to achieve in smart CPS

Framework for Experimentations with self-adaptive CPS

https://github.com/d3scomp/JDEECo