
Hogna:
A Platform for Self-Adaptive

Applications in Cloud Environments

Cornel Barna, Hamoun Ghanbari,
Marin Litoiu and Mark Shtern

York University, Toronto, Canada

Agenda

• The problem and challenges

• Adaptive Systems

• Hogna

– Overview

– Configuration file

– Components

2 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

The Problem

• A researcher wants to test management
algorithms/strategies for applications
deployed in cloud, and explore their
advantages and disadvantages.

3 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

Challenges

• Communication complexity with the cloud
provider
– Interaction using API requires: authentication, keep

track of instances and their status;

• Deploying software on new instances and
configuring it

• Extracting metrics from the instances
– Customs metrics;
– Consolidation of metrics;

• Executing custom actions as part of cloud
management

4 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

Adaptive Systems

5 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

Hogna

• Platform for deploying self-adaptive applications on
clouds

• Implements the MAPE-K loop
• Advantages:

– Replace only the management logic, thus comparing the
efficiency of multiple managements strategies

– Replace the execution engine, thus using different cloud
providers

– Replace monitors to get more accurate metrics
– Replace only the managed resource, thus comparing

management strategies against different application types
– Works on live systems, instead of simulated ones

6 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

Hogna: Features

• Automatic deployment of a topology

• Monitoring that handles metrics extraction and
consolidation

• Performance model to be used during adaptation
process

• Mechanism to insert logic to analyze data and
plan the changes

• Extensibility: almost every aspect can be
customized, and every component can be
replaced

7 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

Hogna’s Architecture

Secondary Subsystem

Configuration Logging and Debugging Workload Generator

Primary Subsystem

Monitoring
1. Collect metrics from all

monitors;

2. Normalize data;

3. Create data-structure

for this sample;

4. Store sample in

memory database;

5. Wait;

SNMP JMX ActiveWatch ...

5

1

2

3

4

Execution Engine

EC2 OpenStack RackSpace

Deploy

Topology

Add

Instance

Remove

Instance

Migrate

Instance

Resize

Instance

Pause

Instance

Management

Model

Analyze Plan

Execute Monitor

Managed Resource

8 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

Hogna: Example

public static void main(String ... args) throws Exception

{

ConfigurationManager.Configure("./application.config");

HognaEngine theApp = new HognaEngine();

SimpleDecisionEngine decEngine = new SimpleDecisionEngine();

decEngine.AddExpandRule(new ClusterResizeRule(

 "/WebCluster/Average/CPUUtilization", 0.80, "WebCluster", 1));

decEngine.AddContractRule(new ClusterResizeRule(

 "/WebCluster/Average/CPUUtilization", 0.40, "WebCluster", -1));

theApp.SetAnalyzer(decEngine);

theApp.SetPlanner(decEngine);

theApp.SetMonitorEngine(new TopologyMonitorManagerV2());

theApp.SetActuator(new AmazonSimpleAppActuator());

theApp.Run();

}

9 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

Hogna: Example with Model

public static void main (String ... args) throws Exception
{

ConfigurationManager.Configure("./application.model.config");

HognaEngine theApp = new HognaEngine();

theApp.SetModel ("./Simple DB Operations.model.pxl");
theApp.SetFilter("./Simple DB Operations.kalman.config");

SimpleDecisionEngine analyzer = new SimpleDecisionEngine();
analyzer.AddExpandRule(new ClusterResizeRule(
 "/WebCluster/Average/CPUUtilization", 0.80, "WebCluster", 0));
analyzer.AddContractRule(new ClusterResizeRule(
 "/WebCluster/Average/CPUUtilization", 0.40, "WebCluster", 0));
theApp.SetAnalyzer(analyzer);

theApp.SetPlanner(new SimpleModelPlanner());
theApp.SetMonitorEngine(new TopologyMonitorManagerV2());
theApp.SetActuator(new AmazonSimpleAppActuator());

theApp.Run();

}

10 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

Input File: Topology
<configSections>
 <section name="topology" type="Application.Configuration.TopologyConfigurationSection" />
</configSections>

<topology>
 <cluster name="Web Cluster" id="WebCluster">
 <node name="Web Balancer" type="balancer" ami="ami-05eebb6c" size="m1.large"
security="corba" region="us-east-1d">
 <container name="Apache 2"> <service name="proxy_balancer" id="proxy_balancer" />
</container>
 </node>
 <node name="Web Host" type="worker" ami="ami-05eebb6c" size="m1.small" security="corba"
region="us-east-1d">
 <container name="Tomcat 6"> <service name="Simple Database Operations" id="webAppSDO" />
</container>
 </node>
 </cluster>
 <dependencies>
 <dependency from="proxy_balancer" to="webAppSDO" />
 </dependencies>
</topology>

TopologyConfigurationSection secTopology = (TopologyConfigurationSection)
 ConfigurationManager.GetSection("topology");
Topology theTopology = secTopology.GetTopology();

11 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

Configuring Instances
<ec2>
 <configHelpers>
 <helper serviceId="proxy_balancer"
 type="Framework.Cloud.EC2.ConfigHelperLoadBalancerWithProxy" />
 </configHelpers>
</ec2>

public class ConfigHelperLoadBalancerWithProxy implements IConfigHelper {
 public void Configure (Node node) {
 String configScript = "sudo service apache2 start; exit 0;";
 SshClient.ExecuteCommand(node.GetPublicIp(), configScript);
 }

 public void AddDependency (Node depFrom, List<Node> depTo) {
 // create/load script that modifies "proxy-balancer.conf"
 // adding as workers all nodes in "depTo"
 }

 public void RemoveDependency (Node depFrom, List<Node> depTo) {
 // create/load script that modifies "proxy-balancer.conf"
 // removing all workers specified in "depTo"
 }
}

12 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

Input File: Monitors
<configSections>
 <section name="monitoring" type="Application.Configuration.MonitorConfigurationSection" />
</configSections>

<monitoring>
 <loaders>
 <loader type="cloud watch" value="Framework.Cloud.EC2.CloudWatchMonitorLoader" />
 <loader type="snmp" value="Framework.Monitoring.SnmpMonitorLoader" />
 </loaders>
 <monitors>
 <monitor name="CPUUtilization" type="cloud watch">
 <description>
 Gets the CPU utilization of an instance.
 </description>
 <credentials file="./config/AwsCredentials.properties" />
 </monitor>

 <monitor name="SnmpCPU" type="snmp">
 <description> ... </description>
 <connection host="127.0.0.1" port="1610" timeout="5000" retries="2" />
 <object oid=".1.3.6.1.2.1.25.3.3.1.2.768" community="public" />
 </monitor>
 </monitors>
</monitoring>

13 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

Monitoring subsystem

• Automatically loads monitors from the configuration
file

• Maintains a list of monitors
– JMX, SNMP and EC2 ActiveWatch

– New types of monitors can be added

• The list is dynamically updated when instances are
added/removed

• Each monitor extracts a single value

• Works independently from other components (at any
moment there is MetricValues object available)

14 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

Analyzer and Planner

• Must be implemented together: the output from analyzer must be
understood by planner

• Analyzer
– Implements the IAnalyzer interface
– Receive the measured metrics (an object of type MetricsValues)
– Evaluates system’s health
– The results are stored in an object of type AnalyzerResults, passed

to the planner

• Planner
– Implements the IPlanner interface
– Has access to the topology, metrics, the results of the analyzer, and a

performance model
– Must to be able to interpret the analyzer’s results
– Creates a set of actions that must be executed to fix the problems

identified by the analyzer

15 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

Performance Model

• OPERA is available for modeling the web
applications:

– Uses Layered Queuing Networks

– Can be used to evaluate the impact of changes,
before they are deployed

• The model’s parameters are tuned
automatically using Kalman Filter

SEAMS 2015 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments 16

Executor

• Implements the action plan

• Handles communication with the cloud
manager

• Out-of-the-box executor for Amazon EC2

– adds/removes instances

– deploys a topology

– adding more actions requires customizing the
executor

17 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments SEAMS 2015

Case Study:
Elasticity using Thresholds

SEAMS 2015 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments 18

Case Study:
Elasticity using OPERA

SEAMS 2015 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments 19

Questions?

• Hogna is available at:

http://www.ceraslabs.com/hogna

• OPERA description

http://www.ceraslabs.com/technologies/opera

SEAMS 2015 Hogna: A Platform for Self-Adaptive Applications in Cloud Environments 20

http://www.ceraslabs.com/hogna
http://www.ceraslabs.com/hogna
http://www.ceraslabs.com/technologies/opera
http://www.ceraslabs.com/technologies/opera

