

Towards an Autonomic Auto-Scaling Prediction System for Cloud Resource Provisioning

Ali Nikravesh; Samuel A. Ajila; Chung-Horng Lung Department of Systems and Computer Engineering Carleton University, Ottawa, Canada

Agenda

- Introduction
 - Problem Statement
 - Research Scope
 - Research Goal
- Our Approach
 - Workload Patterns
 - Time-series Prediction Algorithms
- Experiment and Results
- Self-adaptive Prediction Suite
- Conclusions & Future Work

Problem Statement

- Canada's Capital University
 - Two important characteristics of cloud computing:
 - Elasticity: Users can acquire and release resources on demand
 - Pay as you go pricing model
 - Elasticity can lead to cost/performance trade-off
 - Over-provisioning
 - Cost
 - Under-provisioning
 - SLA breach
 - Cost/performance trade-off
 - Solution → Auto-scaling systems: automatically adjusts resources based on the incoming requests

Problem Statement (cont'd)

Auto-Scaling

• Reactive

- Advantages: simple, easy to use
- Disadvantage: slow, neglects virtual machine (VM) boot-up time. (between 5 to 15 minutes!)

Proactive

- Advantage: considers overhead in advance, VM boot-up time
- Disadvantage: suitable for environments with predictable load characteristics

• Predictive

- Advantage: can predict unplanned load spikes
- Disadvantage: accuracy is a challenge

Problem Statement (cont'd)

Auto-Scaling

- Reactive
 - Advantages: simple, easy to use
 - Disadvantage: neglects virtual machine (VM) boot-up time. (between 5 to 15 minutes!)
- Proactive
 - Advantage: considers VM boot-up time
 - Disadvantage: suitable for environments with predictable load characteristics

Predictive

- Advantage: can predict unplanned load spikes
- Disadvantage: poor accuracy

Research Scope

- Cloud computing layers
 - Infrastructure as a Service (laaS)
 - Platform as a Service (PaaS)
 - Software as a Service (SaaS)
- Cloud types
 - Public Cloud: accessible to public
 - Private Cloud: restricted for private use
 - Hybrid Cloud: combination of both public and private

Research Scope

- Cloud computing layers
 - Infrastructure as a Service (laaS)
 - Platform as a Service (PaaS)
 - Software as a Service (SaaS)
- Cloud types
 - Public Cloud: public accessible
 - Private Cloud: restricted for private use
 - Hybrid Cloud: combination of both public and private

• Predictive Auto-Scaling system architectural overview

- **Research goal:** improve Predictor's accuracy
- Hypothesis:

Prediction accuracy of predictive auto-scaling systems can be increased by choosing an appropriate time-series prediction algorithm based on the incoming *workload pattern*

Objective:

Investigate the impact of different workload patterns on the prediction accuracy of time-series prediction algorithms

• Steps:

- 1. Investigate workload patterns
- 2. Explore time-series prediction algorithms
- 3. Conduct experiments to compare prediction algorithms and validate the hypothesis

- Workload refers to a number of user requests, together with the arrival times (trend)
- Workload patterns in cloud computing laaS environment:
 - Growing pattern: represents workloads with increasing trend
 - **Periodic** pattern: represents workloads with seasonal changes.
 - **Unpredicted** pattern: represents fluctuating workloads.

- Time-series algorithms used in auto-scaling environments:
 - Moving Average
 - Poor prediction results
 - Usually used only for noise-removal purposes
 - Auto-Regression
 - Largely used for prediction purposes in auto-scaling
 - Performance highly depends on the monitoring interval, size of the history window, and size of the adaptation window
 - **ARMA** (autoregressive—moving-average)
 - Combination of "Moving Average" and "Auto-Regression"

- Support Vector Machine (SVM) and Neural Networks (NN) are the most accurate machine learning algorithms in the cloud auto-scaling field.
- Support Vector Regression (SVR) is the methodology by which a function is estimated using observed data, which in turn "trains" the SVM.
- Neural Network is a two-stage regression or classification model, typically represented by a network diagram.

Experiments

Canada's Capital University

Hypothesis

Prediction *accuracy* of predictive auto-scaling systems can be increased by choosing an appropriate *time-series prediction algorithm* based on the incoming *workload pattern*

Objective: To explore relations between different workload patterns and prediction accuracy of SVM and NN

• **Benchmark:** TPC-W benchmark (3 tier online bookstore website)

• Infrastructure: Amazon EC2

Experiment Steps

- 1. Select and generate a pattern using TPC-W workload generator (experiment duration is **300 minutes**)
- 2. On the webserver machine, count total number of user requests per minute and store results in a trace file
- **3**. Divide the time-series into "training" and "testing" datasets:
 - Training (60%): train SVM and NN using the "training" dataset (using "sliding window" and "cross-validation" techniques to create prediction models)
 - Testing (40%): Generate workload predictions using SVM and NN prediction models
- 4. Compare SVM and NN prediction results using
 - **RMSE** (Root Mean Square Error)
 - **MAPE** (Mean Absolute Percentage Error)

TPC-W workload generator used along with customized scripts to produce "growing", "periodic", and "unpredicted" patterns

Experiment Results

Experiment Results Summary

- Canada's Capital University
 - Periodic pattern:
 - SVM outperforms NN
 - Increasing window size increases error for NN (upward trend), but does not affect SVM prediction accuracy
 - Growing pattern:
 - SVM outperforms NN
 - Increasing window size increases error for NN (up & down), but does not affect SVM prediction accuracy
 - Unpredicted pattern:
 - NN outperforms SVM
 - Increasing window size increases prediction accuracy for both
 - Lesson:
 - Prediction accuracy can be improved by using a self-adaptive prediction suite that chooses the most suitable prediction algorithm based on the incoming workload pattern

Design of the Self-Adaptive Prediction Suite

We investigated **machine learning** techniques for **auto-scaling prediction**.

- Experimental results:
 - For "growing" or "periodic" workload patterns SVM outperforms NN
 - For "<u>unpredicted</u>" workload patterns NN outperforms SVM
 - Increasing the sliding <u>window size</u>
 - Positive impact on SVM and NN for "unpredicted" workload pattern
 - Ineffective to use only one particular prediction technique for all environments

Proposed self-adaptive prediction suite – multi-tier adaptation "strategy" and "template" design patterns

- Detailed design of self-adaptive prediction suite
 - Multi-tier adaptation
 - Performance knowledge base inference
- Investigate the impact of increasing <u>prediction accuracy</u> on the final scaling decision
- Study the impact of the database layer and latency on
 - Multi-tier adaptation
 - Prediction and decision making accuracy
 - Workload patterns & window sizes
 - Pricing models and SLAs

Thanks Questions?