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* Two important characteristics of cloud computing:

 Elasticity: Users can acquire and release resources on
demand

« Pay as you go pricing model
« Elasticity can lead to cost/performance trade-off
e Qver-provisioning
e Cost
* Under-provisioning
« SLA breach
e Cost/performance trade-off

« Solution - Auto-scaling systems: automatically adjusts
resources based on the incoming requests
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 Auto-Scaling

* Reactive
* Advantages: simple, easy to use

» Disadvantage: slow, neglects virtual machine (VM) boot-up
time. (between 5 to 15 minutes!)

* Proactive
» Advantage: considers overhead in advance, VM boot-up time

» Disadvantage: suitable for environments with predictable load
characteristics

* Predictive
« Advantage: can predict unplanned load spikes
» Disadvantage: accuracy is a challenge
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 Auto-Scaling

* Predictive
« Advantage: can predict unplanned load spikes
» Disadvantage: poor accuracy
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e Cloud computing layers
* Infrastructure as a Service (laaS)
« Platform as a Service (PaaS)
o Software as a Service (SaaS)

e Cloud types
* Public Cloud: accessible to public
* Private Cloud: restricted for private use
e Hybrid Cloud: combination of both public and private
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e Cloud computing layers
* Infrastructure as a Service (laaS)

e Cloud types

* Public Cloud: public accessible
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 Predictive Auto-Scaling system architectural overview
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 Research goal: improve Predictor’s accuracy

 Hypothesis:

Prediction accuracy of predictive auto-scaling
systems can be increased by choosing an
appropriate time-series prediction algorithm based

on the incoming workload pattern
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Objective:

Investigate the impact of different workload patterns
on the prediction accuracy of
time-series prediction algorithms

e Steps:
1. Investigate workload patterns
2. Explore time-series prediction algorithms

3. Conduct experiments to compare prediction
algorithms and validate the hypothesis
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 Workload refers to a number of user requests,
together with the arrival times (trend)

 Workload patterns in cloud computing laaS
environment:

« Growing pattern: represents workloads with increasing
trend

* Periodic pattern: represents workloads with seasonal
changes.

* Unpredicted pattern: represents fluctuating workloads.
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e Time-series algorithms used in auto-scaling
environments:
« Moving Average
» Poor prediction results
» Usually used only for noise-removal purposes
 Auto-Regression

» Largely used for prediction purposes in auto-scaling

» Performance highly depends on the monitoring interval, size of
the history window, and size of the adaptation window

« ARMA (autoregressive—moving-average)
« Combination of “Moving Average” and “Auto-Regression”
« Machine Learning € The best prediction approach
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e Support Vector Machine (SVM) and Neural Networks
(NN) are the most accurate machine learning
algorithms in the cloud auto-scaling field.

e Support Vector Regression (SVR) is the
methodology by which a function is estimated using
observed data, which in turn “trains” the SVM.

 Neural Network is a two-stage regression or
classification model, typically represented by a
network diagram.
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Hypothesis

Prediction accuracy of predictive auto-scaling
systems can be increased by choosing an
appropriate time-series prediction algorithm based
on the incoming workload pattern

Objective: To explore relations between different
workload patterns and prediction accuracy of
SVM and NN
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Experiment Setup

« Benchmark: TPC-W benchmark
(3 tier online bookstore website)

 Infrastructure: Amazon EC2
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1. Select and generate a pattern using TPC-W workload
generator (experiment duration is 300 minutes)

2. On the webserver machine, count total number of user
requests per minute and store results in a trace file

3. Divide the time-series into “training” and “testing” datasets:

=  Training (60%): train SVM and NN using the “training”
dataset (using “sliding window” and “cross-validation”
techniques to create prediction models)

= Testing (40%): Generate workload predictions using SVM
and NN prediction models

4. Compare SVM and NN prediction results using
= RMSE (Root Mean Square Error)
= MAPE (Mean Absolute Percentage Error)
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TPC-W workload generator used along with customized

scripts to produce “growing”, “periodic”, and
“unpredicted” patterns
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Periodic pattern:
« SVM outperforms NN

* Increasing window size increases error for NN (upward trend), but
does not affect SVM prediction accuracy

Growing pattern:
« SVM outperforms NN

* Increasing window size increases error for NN (up & down), but
does not affect SVM prediction accuracy

Unpredicted pattern:

NN outperforms SVM

* Increasing window size increases prediction accuracy for both
Lesson:

« Prediction accuracy can be improved by using a self-adaptive
prediction suite that chooses the most suitable prediction
algorithm based on the incoming workload pattern 15
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We investigated machine learning techniques for
auto-scaling prediction.
* Experimental results:

* For “growing” or “periodic” workload patterns SVM outperforms
NN

* For “unpredicted” workload patterns NN outperforms SVM

 Increasing the sliding window size
» Positive impact on SVM and NN for “unpredicted” workload pattern

* Ineffective to use only one particular prediction technique for
all environments

Proposed self-adaptive prediction suite — multi-tier adaptation

“strategy” and “template” design patterns
17
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= Detalled design of self-adaptive prediction suite
= Multi-tier adaptation
» Performance knowledge base - inference

= |nvestigate the impact of increasing prediction accuracy on
the final scaling decision

= Study the impact of the database layer and latency on
= Multi-tier adaptation
= Prediction and decision making accuracy
= Workload patterns & window sizes

= Pricing models and SLAs .
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