SEAMS 2015, Florence, May 18-19

From Means-End Analysis to
Proactive Means-End Reasoning

The Vision

service
provider

service

provider service

provider

~ _. " . .
9 - B giiis (e
- i - it
User analyst ontology ontology &)
commitment POD commitment
dev team
goal injection M
capability ___
MUSA RUNNING SYSTEM deploy and
\ / maintenance
WHAT \ / HOW U
GOALS \ . (
\ bridge \ s @ <
@ |) @ CAPABILITIES
ACTIVE GOALS/ \ TASKS
/ \
/ \

- S

REAL SERVICES

Goal Oriented Requirements

* A goalis a state of affair that an actor wants
to achieve

o Provide
eetin
GOAL MODEL checiin
A To Mail
Participants
(S To >/< To Sent > < Cancel> To Run)
chedule . .
) ers s Website

Meetings

Mail
Questio
nnaire
Sender

[MEANS-END ANALYSIS

The State of the World

e A state of the world (W?) is a dynamic object
that describes the current “state of affair”

— or better: what the system knows about

 We implement W' by employing a set of
semantically coherent first order logic facts.

e Wtdescribes a closed-world in which
everything is not explicitly declared is
assumed to be false.

Operative Implementation of Goal

GOAL LIFECYCI;[Addressed)

[maintain-goal]

—_—

) [achieve-goal]

FS=true

commit [Ready
o J

] TC=true

Active

goal injection

FS=false

state failure

goal retreat

commitment failure
/@

 Goal's TCis the Condition that must hold in W*in order the agent

can actively pursue that goal.

 Goal's FSis the Condition that must hold in W'in order the goal can

be marked as addressed.

 GOALSpec is a language conceived to inject goal specifications in a

human-friendly format

USER-GOAL_01
WHEN schedule(Usr,Meeting) THE system SHALL

PRODUCE canceled(Meeting) OR confirmed(Meeting)

USER-GOAL_02
WHEN pending(Meeting) AND meeting_datetime(DT) AND

attendee(Meeting,A) THE system SHALL PRODUCE
notified(A,Meeting,DT)

Al-Style CAPABILITIES

The system owns a set of capabilities, i.e. atomic
and self-contained actions

The effect of a capability is an endogenous
evolution of W!

The system is aware of its capabilities

and it is aware of ‘when’” and ‘how’ to use a
capability in order to address a desired result

Name ~ PROPOSAL _MAIL_SENDER
InputParam QUESTION : T
RESPONSE ID: STRING
USERMAIL : STRING
OutputParams NONE
Constraints format(UserMail, ABSTRACT DESCRI PTIO N
RFC_5322_Address_Specification) O F A CA PABl LITY
Pre-Condition email(Usr, User Mail)
Post-Condition noti fied(Question, Usr)
Evolution evo = {add(notified(Msg, Usr)),
add(mailed(User M ail, Question))
add(questioned(U sr, Responseld))}

Bridging WHAT and HOW

» by
~ o O £
= Y &
user analyst dev team
N
goal injection dca|o|abilityd
ICl al ar: artcipants ep Oy an
maintenance
WHEN pending(Meeting) \\ // HOW (Ca abllltleS) google
AND meeting datetime(DT) p
AND attendee(Meeting,A) \ .
THE system SHALL \ bridge \ PROPOSAL MAIL SENDER s
PRODUCE -~
notified(A,Meeting,DT) \< >/ COLLECT_MAIL_RESPONSES MAILER
| ‘ I
WHAT (goal spec) // MUSS":(g?g"\;“NG \\ GOOGLE_CALENDAR_CHECK | CALENDAR

The PROACTIVE MEANS-END REASONING
is the problem of
finding the minimal set of capabilities (called PMR
Solution) that can fully address a goal model, given the
current W

The PMR Solution

 The Proactive Means-End Reasoning is different
from

— A scheduling problem: it does not require an exact
timing of the activities

— A planning problem: it does not require to create a
plan for executing the activities
* The system will contextually evaluate which
capability to use, when, and how.

— The same capability in the PMR_Solution will
eventually used 0..n times

The proposed algorithm

* |tis based on the ability to discover if a
capability can be used for addressing a goal

(or contributing to)

* The principle is that of matching Goal’s TC/FS
and Capability’s Pre/Post/Evolution

* This is possible if goals and capabilities share
— The same formalism
— The same background ontology

The State of World as
Common Formalism

wants >

GOAL

is active when

V¥ is addressed

SUBJECT

CAPABILITY

generates

<

is correctly executed

EVOLUTION

h
when is execlitable when V; en
TRIGGER FINAL
CONDITION STATE PRE POST
CONDITION CONDITION
to test over P STATE OF

CONDITION

V| modifies

THE WORLD

The Ontology as
Common Background

<<position>>

<<predicate>>

User Free
<<action>> 7 —
Schedule is-a Timeslot
S <<predicate>>
<<predicate>> . _ Busy
MinAttendees <<position>> | Is-a
\ Initiator / Calendar
<<predicate>> / 7
Pending ——— Meeting <<position>> Contact Info
Attendee
— AN
<<predicate>> msg usr . _
Canceled 1S-a 1S-a
, [
<<predicate>>
<<predicate>> Notified Email Skype Id
Confirmed .
<<action>>
Meeting |« | Accepted
ISO 8601 |«—is-a ™ | DateTime \

DateTime

<<action>>
Rejected

Common Background (I1)

USER-GOAL 01
WHEN| pending(Meeting) AND meeting datetime(DT) AND
attendee(Meeting,A) THE system SHALL PRODUCE

notified(Meeting, A) N _
<<position>> <<predicate>>
User Free
<<action>> 7 |
Schedule is-a Timeslot
\ S <<predicate>>
<<predicate>> . , Busy
MinAttendees <<p9§|t|on>> is-a
Initiator / Calendar
<<predicate>> =X & £ | ' et
Pendin I§ "
I — Meeting SSBpsition>> Contact Info
i1 ' Attendee
. Rl & AN
<<predicate>> -~ msg ust _ _
Canceled \ e O
<<predicate>> :
<<predicate>> Loliee Email Skype Id
Confirmed .
<<action>> 5
ame PROPOSAL_MAIL_SENDER
Meeting / Accepted InputParams QUESTION : TEXT,

i —] DateTime RESPONSEID: STRING
ISO 8601 <— 1S-a \] USERMAIL : STRING
<<action>>

DateTime OutputParams NONE
RejeCted Constraints format(UserMail,
RFC_5322_Address_Speci fication)
Pre-Condition |email(Usr, User M ail) |
Post-Condition noti fied(Question, Usr)
Evolution evo = {add(notified(Msg, Usr)),

add(questioned(U sr, Responseld))}

Planning-Like Space Exploration

USER-GOAL_01

WHEN pending(Meeting) AND meeting datetime(DT) AND
attendee(Meeting,A) THE system SHALL PRODUCE
notified(A,Meeting)

APPEND
MEETING

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,luca)
verified_ts(luca,meet_673)
notified(luca,meet_673)

pending(meet_673)
meeting_datetime(dt(12,04,2015
attendee(meet_673,luca)
calendar(luca,lucas76)

pending(meet_673)
meeting_datetime(dt(12,04,2015)
attendee(meet_673,luca)

verified_ts(luca,dt(12,04,2015))

CALENDAR

goal
fulfillment

Name Calendar_Timeslot_Check Name Append_Meeting

Pre-condition calendar(Usr,UserAccount) Pre-condition free(Usr,TimeSlot)

Post-condition free(Usr,TimeSlot) OR busy(Usr,TimeSlot) Post-condition busy(Usr,TimeSlot)

Evolution evo={ add(verified_ts(Usr,TimeSlot)) } Evolution evo={ add(notified(Usr,Meeting)) }

Space Exploration (ll)

USER-GOAL 01
WHEN pending(Meeting) AND meeting datetime(DT) AND
attendee(Meeting,A) THE system SHALL PRODUCE
notified(A,Meeting)

pending(meet_673)
meeting_datetime(dt(12,04,2015))
attendee(meet_673,john)
calendar(john, john.castel)
email(john, john@gmail.com)
verified_ts(john,dt(12,04,2015)

pending(meet_673)
meeting_datetime(dt(12,04,2015))
attendee(meet_673,john)
calendar(john, john.castel)
email(john, john@gmai

gending(meet673)
meeting_datetime(dt(12,04,2015))
attendee(meet_673,john)
calendar(john, john.castel)
email(john, john@gmail.com)
verified_ts(john,dt(12,04,2015))
notified(john,meet_673

APPEND

CALENDAR MEETING

PROPOSAL
MAIL SENDER

pending(meet_673)
meeting_datetime(dt(12,04,2015))
attendee(meet_673,john)
calendar(john, john.castel)
email(john, john@gmail.com)
questioned(john,meet_673,dt(12,04,

ending(meet
meeting_datetime(dt(12,04,2015))
attendee(meet_673,john)
calendar(john, john.castel)
email(john, john@gmail.com)
5) guestioned(john,meet_673,dt(12,04,20
notified(john,meet_67.

COLLECT MAIL
RESPONSE

Name Proposal Mail Sender Name Collect Mail Response
Pre-condition email(Usr,MailAddress) Pre-condition email(Usr,MailAddress)
Post-condition questioned(Usr,Meeting) Post-condition accepted(Usr,Meeting) OR
rejected(Usr,Meeting)
Evolution evo={ add(questioned(Usr,Meeting)) } - ”]
Evolution evo={ add(notified(Usr,Meeting)) }

Final Remarks — Self Adaptation

e Self Adaptation is the result of a loop in which
the Proactive Means-End Reasoning is executed
every time (with different W')

Proactive i goal

e e r:f:;osr-]iennd commitment
— New goal-model is injected / ‘g\ N

monitor capability environment

- An EXiSﬁ ng gOa I C h a n geS goal injection execution monitoring

— A capability fails:
» software failure and exceptions
* the generated W is different from the expected one

* the connected resource is no more available

— New capability is injected

Future Works

 The planning algorithm is inefficient
— In some circumstances it requires an exponential time to
complete.
— We are planning to explore many strategies for improving it
* SAT solvers, optimized planning and case base reasoning
e Scalability is limited
— We are studying a better integration with a Cloud architecture
(Open-Stack)
* To date the use of a static ontology enables the agent's

— itis also a limit when capabilities/goals evolve one independently
from the others.

— In order to enable distributed development-teams, we are
integrating linguistic techniques for dealing with
e conceptual ambiguities and linguistics flaws, similarities and synonyms.

https://github.com/icar-aose/MUSA

Questions?

sabatucci@pa.icar.cnr.it

