
From	
 Means-­‐End	
 Analysis	
 to	

Proac5ve	
 Means-­‐End	
 Reasoning	

Luca	
 Sabatucci	
 and	
 Massimo	
 Cossen5no	

SEAMS	
 2015,	
 Florence,	
 May	
 18-­‐19	
 	

The	
 Vision	

service
provider

MUSA RUNNING SYSTEM

GOALS

user analyst

ACTIVE GOALS
CAPABILITIES

dev team

TASKS
REAL SERVICES

goal injection
capability

deploy and
maintenance

service
provider

service
provider

bridge

WHAT HOW

POD
ontology

commitment
ontology

commitment

Goal	
 Oriented	
 Requirements	

•  A	
 goal	
 is	
 a	
 state	
 of	
 affair	
 that	
 an	
 actor	
 wants	

to	
 achieve	

II. FORMAL FOUNDATION

This section illustrates the theoretical background that in-
troduces the basic concepts of this paper.

A. State of the World Definition
We consider the software system has a (partial) knowledge

about the environment in which it runs. The classic way for
expressing this property is (Bel a ') [13] that specifies that a
software agent a believes ' is true, where ' is a generic state
of affair. We decided to limit the range of ' to first order
variable-free statements (facts). They are enough expressive
for representing an object of the environment, a particular
property of an object or a relationship among two ore more
objects. A fact is a statement to which it is possible to assign a
truth value. Examples are: tall(john) or likes(john,music).

Definition 1 (Subjective State of the World). We define the
subjective state of the world in a given time t as a set W t ⇢ S
where S is the set of all the (non-negated) facts (s1, s2 . . . sn)
that can be used in a given domain.

W t has the following characteristics:

W t = {s
i

2 S|(Bel a s
i

)} (1)

where a is the subjective point of view that believes all facts
in W t are true at time t; and

8s
i

, s
j

2 S if s
i

^ s
j

`? then
⇢
s
i

2 W t) s
j

62 W t

s
j

2 W t) s
i

62 W t

(2)

i.e.: the state of the world is a consistent subset of facts
with no (semantics) contradictions.

W t describes a closed-world in which everything that is
not explicitly declared is assumed to be false. An example
of W t is shown in Figure 1, whereas, for instance the set
{tall(john), small(john)} is not a valid state of world since
the two facts produce a semantic contradiction.

tall(john)

likes(john,music)

likes(john,pizza)

age(john,16)

W t

Fig. 1. Example of a State of the World configuration at time t.

A Condition of a state of the world is a logic formula
composed by predicates or variables, through the standard set
of logic connectives (¬,^,_). A condition may be tested
against a given W t through the operator of unification.

B. Goal Definition
In many Goal-Oriented requirement engineering methods

the definition of Goal [7] is: “a goal is a state of affair that
an actor wants to achieve”. We refined this statement to be
compatible with the definition of W t as: “a goal is a desired

change in the state of the world an actor wants to achieve”, in
line with [14]. Therefore, to make this definition operative, it is
useful to characterize a goal in terms of a triggering condition
and a final state.

Definition 2 (Goal). A goal is a pair: htc, fsi where tc
and fs are conditions to evaluate (over a state of the world)
respectively when the goal may be actively pursued (tc) and
when it is eventually addressed (fs). Moreover, given a W t we
say that

the goal is active iff tc(W t) ^ ¬fs(W t) = true

the goal is addressed iff fs(W t) = true.

It is worth noting that when the triggering condition is
trivially defined as true, then the above reported definition
coincides with the classical definition of Goal.

It follows the definition of goal model, inspired by [15]:

Definition 3 (Goal Model). A goal model is a directed
graph, (G,R) where G is a set of goals (nodes) and R is
the set of Refinement and Influence relationships (edges). In
a goal model there is exactly one root goal, and there are no
refinement cycles.

Figure 2 is the partial goal model, represented with the i*
notation, for the meeting scheduling case study. This example,
redesigned from [15], includes functional (hard) goals only,
and AND/OR refinements. The root goal is to provide meeting
scheduling services that is decomposed in schedule meet-
ings, send reminders, cancel meetings and running a website.
Therefore meetings are scheduled by collecting participant
timetables, choosing a schedule and choosing a location. Such
a model is useful for analysts to explore alternative ways for
fulfilling the root goal.

OR

To Call
Participants

To Check
Calendars

To Mail
Participants

AND

To Provide
Meeting

Scheduling

To
Schedule
Meetings

To Sent
Reminders

To Cancel
Meetings

To Run
Website

AND

To Collect
Timetables

To
Choose

Schedule

To
Choose
Location

[…] […]

[…] […]

[…]

Fig. 2. Portion of Goal Model taken from [15] for the Meeting Scheduling
case study. For reasons of space, the tree has been truncated (with respect to
the original one) where the symbol [. . .] appears.

C. Capability Definition

In many goal-oriented approaches, a Task is the operational-
ization of a Goal. This means that each task, in a goal model,
is associated to one (or more) leaf goal(s). This association is
made at design time as the result of a human activity called

GOAL	
 MODEL	

To Mail

Participants

Mail
Questio
nnaire
Sender

MEANS-­‐END	
 ANALYSIS	

The	
 State	
 of	
 the	
 World	

•  A	
 state	
 of	
 the	
 world	
 (Wt)	
 is	
 a	
 dynamic	
 object	

that	
 describes	
 the	
 current	
 “state	
 of	
 affair”	

– or	
 beXer:	
 what	
 the	
 system	
 knows	
 about	

•  We	
 implement	
 Wt	
 by	
 employing	
 a	
 set	
 of	

seman5cally	
 coherent	
 first	
 order	
 logic	
 facts.	

•  Wt	
 describes	
 a	
 closed-­‐world	
 in	
 which	

everything	
 is	
 not	
 explicitly	
 declared	
 is	

assumed	
 to	
 be	
 false.	

Opera5ve	
 Implementa5on	
 of	
 Goal	

•  Goal's	
 TC	
 is	
 the	
 Condi5on	
 that	
 must	
 hold	
 in	
 Wt	
 in	
 order	
 the	
 agent	

can	
 ac5vely	
 pursue	
 that	
 goal.	

•  Goal's	
 FS	
 is	
 the	
 Condi5on	
 that	
 must	
 hold	
 in	
 Wt	
 in	
 order	
 the	
 goal	
 can	

be	
 marked	
 as	
 addressed.	

•  GOALSpec	
 is	
 a	
 language	
 conceived	
 to	
 inject	
 goal	
 specifica5ons	
 in	
 a	

human-­‐friendly	
 format	

GOAL LIFECYCLE

Injected ActiveReadycommit
FS=true

FS=false

TC=true

state failurecommitment failure

[maintain-goal]
[achieve-goal]

Addressed

goal retreat

goal injection

GOAL

SUBJECT
TRIGGER

CONDITION
FINAL
STATE

EVENT STATE OF
THE WORLD

wants

is active when is addressed
when

generated by composed of

Fig. 7. The Core Metamodel of the Goal Specification Language.

a Trigger Condition and a Final State. The subject is a noun
that describes the name of the involved person, role or group
of persons that owns the responsibility to address the goal. The
trigger condition is an event that must occur in order to start
acting for addressing the goal. The final state is the desired
state of the world that must be addressed.

It is worth underlining that both Trigger Conditions and
Final States must be expressed by using a State of the World,
that in turn is expressed through domain ontology predicates.

For a complete specification of the syntax of GoalSPEC
see [32]. Some examples of GoalSPEC productions for the
domain of the Meeting Scheduling are listed below:

1) WHEN schedule(Usr,Meeting) THE system SHALL
PRODUCE canceled(Meeting) OR confirmed(Meeting)

2) WHEN pending(Meeting) AND meeting datetime(DT) AND
attendee(Meeting,A) THE system SHALL PRODUCE
notified(A,Meeting,DT)

3) AFTER 2 days SINCE WHEN notified(Usr,Meeting,DT)
THE system SHALL PRODUCE accepted(Usr, Meeting,DT)
OR rejected(Usr, Meeting,DT)

Each of the items shown before are goals. For purpose of
clarity we put in uppercase the keywords of the language, and
in lowercase the domain specific predicates constrained by the
problem ontology (Figure 5). Goal 1 indicates that ‘when the
software agent knows a user is going to schedule a meeting,
then it should bring the meeting to a state of canceled or
confirmed’. Goal 2 states that ‘when a meeting is yet in a
state of pending, but a date-time is going to be proposed to a
set of attendees, then each of these attendees has to be notified
about’. Finally, Goal 3 says that ‘when two days past since
the notification has been sent, then the system must collect the
results (accepted or rejected)’.

After that a set of goals has been completed, it can be
injected into the running system, thus to let the system try to
address them. We called this mechanism goal injection [33].

C. A Capability Specification Language
In AI, the need for representing software agent’s actions

in order to implement reasoning directed towards action is a
long-dated point of discussion [13], [21], [22], [34]. An agent

is able to achieve a goal by doing an action if i) the agent
knows what the action is and ii) knows that doing the action
would result in the goal being satisfied [21]. This topic has
become even more current because the amount of services
deployed in the web is exponentially growing and researchers
are looking for ways for automatically searching, selecting and
composing them [35].

We use Capability as an internal representation of an atomic
unit of work that a software agent may use for addressing
changes in the state of the world. A Capability is made of
two components: an abstract description (a set of beliefs that
makes an agent aware of owning the capability and able to
reason on its use), and a concrete body implementation (a set
of plans for executing the job).

Whereas we define a template for providing the abstract
description of a capability, we do not provide any language for
the body, leaving the choice of the specific technology to the
developer. The proposed template (Table I) is a refinement of
that presented in [35] for LARKS (language for advertisement
and request for knowledge sharing).

TABLE I
TEMPLATE FOR DOCUMENTING A CAPABILITY DESCRIPTION.

Name Unique label used to refer to the capability

InputParams Definition of the input variables necessary for
the execution.

OutputParams Definition of the output variables produced by
the execution.

Constraints Optional (logical or structural) constraints on
input/output variables.

Pre-Condition Condition that must hold in the current state of
the world in order to execute the capability.

Post-Condition Condition that must hold in the final state of
the world in order to assert the capability has
been correctly executed.

Evolution Function of evolution evo : W �! W as
described in Section II

Tables II and III are two examples of capabilities that work
with emails. The Proposal Mail Sender capability encodes
a question into the content of an email, thus the receiver
can select two links, for answering yes or no. The second
capability, Collect Response, looks at all the received answers
to a given question and returns an array in which there is an
item for each user who replied.

There is also a special category of capabilities that is Cloud
Capability. These capabilities have been created for interacting
with a REST application on the cloud. An example is the
Google Calendar Check capability reported in Table IV. The
aim of this capability is to interact with users’ google calendar
account for obtaining whether a given time slot is free or busy.

D. Implementing Self-Awareness

Reasoning about knowledge and belief is still an issue
of concern in philosophy and artificial intelligence. For the

GOAL

SUBJECT
TRIGGER

CONDITION
FINAL
STATE

EVENT STATE OF
THE WORLD

wants

is active when is addressed
when

generated by composed of

Fig. 7. The Core Metamodel of the Goal Specification Language.

a Trigger Condition and a Final State. The subject is a noun
that describes the name of the involved person, role or group
of persons that owns the responsibility to address the goal. The
trigger condition is an event that must occur in order to start
acting for addressing the goal. The final state is the desired
state of the world that must be addressed.

It is worth underlining that both Trigger Conditions and
Final States must be expressed by using a State of the World,
that in turn is expressed through domain ontology predicates.

For a complete specification of the syntax of GoalSPEC
see [32]. Some examples of GoalSPEC productions for the
domain of the Meeting Scheduling are listed below:

1) WHEN schedule(Usr,Meeting) THE system SHALL
PRODUCE canceled(Meeting) OR confirmed(Meeting)

2) WHEN pending(Meeting) AND meeting datetime(DT) AND
attendee(Meeting,A) THE system SHALL PRODUCE
notified(A,Meeting,DT)

3) AFTER 2 days SINCE WHEN notified(Usr,Meeting,DT)
THE system SHALL PRODUCE accepted(Usr, Meeting,DT)
OR rejected(Usr, Meeting,DT)

Each of the items shown before are goals. For purpose of
clarity we put in uppercase the keywords of the language, and
in lowercase the domain specific predicates constrained by the
problem ontology (Figure 5). Goal 1 indicates that ‘when the
software agent knows a user is going to schedule a meeting,
then it should bring the meeting to a state of canceled or
confirmed’. Goal 2 states that ‘when a meeting is yet in a
state of pending, but a date-time is going to be proposed to a
set of attendees, then each of these attendees has to be notified
about’. Finally, Goal 3 says that ‘when two days past since
the notification has been sent, then the system must collect the
results (accepted or rejected)’.

After that a set of goals has been completed, it can be
injected into the running system, thus to let the system try to
address them. We called this mechanism goal injection [33].

C. A Capability Specification Language
In AI, the need for representing software agent’s actions

in order to implement reasoning directed towards action is a
long-dated point of discussion [13], [21], [22], [34]. An agent

is able to achieve a goal by doing an action if i) the agent
knows what the action is and ii) knows that doing the action
would result in the goal being satisfied [21]. This topic has
become even more current because the amount of services
deployed in the web is exponentially growing and researchers
are looking for ways for automatically searching, selecting and
composing them [35].

We use Capability as an internal representation of an atomic
unit of work that a software agent may use for addressing
changes in the state of the world. A Capability is made of
two components: an abstract description (a set of beliefs that
makes an agent aware of owning the capability and able to
reason on its use), and a concrete body implementation (a set
of plans for executing the job).

Whereas we define a template for providing the abstract
description of a capability, we do not provide any language for
the body, leaving the choice of the specific technology to the
developer. The proposed template (Table I) is a refinement of
that presented in [35] for LARKS (language for advertisement
and request for knowledge sharing).

TABLE I
TEMPLATE FOR DOCUMENTING A CAPABILITY DESCRIPTION.

Name Unique label used to refer to the capability

InputParams Definition of the input variables necessary for
the execution.

OutputParams Definition of the output variables produced by
the execution.

Constraints Optional (logical or structural) constraints on
input/output variables.

Pre-Condition Condition that must hold in the current state of
the world in order to execute the capability.

Post-Condition Condition that must hold in the final state of
the world in order to assert the capability has
been correctly executed.

Evolution Function of evolution evo : W �! W as
described in Section II

Tables II and III are two examples of capabilities that work
with emails. The Proposal Mail Sender capability encodes
a question into the content of an email, thus the receiver
can select two links, for answering yes or no. The second
capability, Collect Response, looks at all the received answers
to a given question and returns an array in which there is an
item for each user who replied.

There is also a special category of capabilities that is Cloud
Capability. These capabilities have been created for interacting
with a REST application on the cloud. An example is the
Google Calendar Check capability reported in Table IV. The
aim of this capability is to interact with users’ google calendar
account for obtaining whether a given time slot is free or busy.

D. Implementing Self-Awareness

Reasoning about knowledge and belief is still an issue
of concern in philosophy and artificial intelligence. For the

USER-­‐GOAL_01	
 USER-­‐GOAL_02	

AI-­‐Style	
 CAPABILITIES	

•  The	
 system	
 owns	
 a	
 set	
 of	
 capabili5es,	
 i.e.	
 atomic	

and	
 self-­‐contained	
 ac5ons	

•  The	
 effect	
 of	
 a	
 capability	
 is	
 an	
 endogenous	

evolu5on	
 of	
 Wt	
 	

•  The	
 system	
 is	
 aware	
 of	
 its	
 capabili5es	

•  and	
 it	
 is	
 aware	
 of	
 ‘when’	
 and	
 ‘how’	
 to	
 use	
 a	

capability	
 in	
 order	
 to	
 address	
 a	
 desired	
 result	
 TABLE II

ABSTRACT SPECIFICATION OF THE PROPOSAL MAIL SENDER CAPABILITY.

Name PROPOSAL MAIL SENDER

InputParams QUESTION : TEXT,
RESPONSEID: STRING
USERMAIL : STRING

OutputParams NONE

Constraints format(UserMail,

RFC 5322 Address Specification)

Pre-Condition email(Usr, UserMail)

Post-Condition notified(Question, Usr)

Evolution evo = {add(notified(Msg, Usr)),
add(mailed(UserMail,Question))
add(questioned(Usr,ResponseId))}

TABLE III
ABSTRACT SPECIFICATION OF THE COLLECT RESPONSE CAPABILITY.

Name COLLECT MAIL RESPONSES

InputParams RESPONSEID : STRING

OutputParams RESPONSEARRAY : ARRAYOF(
RESPONSE(USR,{yes | not}))

Constraints NONE

Pre-Condition questioned(Usr,ResponseId))

Post-Condition accepted(Usr,ResponseId)_
rejected(Usr,ResponseId)

Evolution evo = {add(accepted(Usr,ResponseId))
add(rejected(Usr,ResponseId))
remove(questioned(Msg,ResponseId))}

purpose of this work, some simplifications have been assumed
for aiming at the core of this research problem.

The principle at the base of the approach is that a software
agent can store injected goals, its capabilities, the compu-
tational state and the execution process by using the same
belief baseFirst-order logic provides a well-understood model-
theoretic semantics and it enables characterization of reasoning
on goals and capabilities in terms of classical notions of
deduction and consistency [36].

The issue of implementing injected user-goals into a
BDI [30] agent has been already considered in some recent
works in literature [11]. Similarly, also annotating agent’s
capabilities/services with a first-order logic semantics is an
open branch of research [12].

Here is a couple of examples of how respectively Goal 1
and Goal 2 reported in Section III-B may be encoded in a
software agent’s belief base:

agent_goal(

params([usr,mtg] , [

category(usr, attendee),

category(mtg, meeting)]),

tr_condition(schedule(usr,mtg)),

final_state(or(

canceled(mtg),

confirmed(mtg))),

TABLE IV
ABSTRACT SPECIFICATION OF THE GOOGLE CALENDAR CHECK

CAPABILITY.

Name GOOGLE CALENDAR CHECK

InputParams SLOT : TIMESLOT, USERCALENDAR : CAL-
ENDAR

OutputParams RESPONSEARRAY : ARRAYOF(
SLOT(USR,{free | busy}))

Constraints format(Slot,
slot(dt(year,month, day, hour,minute),
dt(year,month, day, hour,minute)))

Pre-Condition calendar(Usr, UserCalendar)

Post-Condition free(Usr, T imeslot)_
busy(Usr, T imeslot)

Evolution evo = {add(notified(Msg, Usr)),
add(free(Usr, T imeslot))
add(busy(Usr, T imeslot))}

system

)

agent_goal(

params([mtg,dt,a], [

category(mtg, meeting),

category(dt, meetingdatetime),

category(a,attendee)) ,

tr_condition(and(

pending(mtg),

meeting_datetime(dt),

attendee(mtg,a))),

final_state(notified(a,mtg,dt),

system

)

This code has to be read as follows: the agent knows
to own a couple of goals. The first goal is linked to two
concepts of the ontology: Attendee and Meeting. It has, as
triggering condition, the formula schedule(usr,meeting) and,
as final state, a logical OR condition between two statements:
canceled(meeting) and confirmed(meeting). The second goal
grounds over three concepts of the domain: Meeting, Meeting-
DateTime and Attendee. The goal precondition is the logical
AND condition of three elements, whereas the final state is
the formula notified(a,mtg,dt).

The first advantage of having goals in the agent belief base
is that they can dynamically change during the agent life.
Indeed, new goals can be added into the belief-base, or existing
goals can be retreat. An injected goal is not automatically
committed by the agent through a plan (as it happens in many
rule-based systems): goal commitment is the result of agent
reasoning.

In a similar encoding style, the agent can also store ab-
stract capabilities. Here a couple of examples of the pro-
posal mail sender and collect mail responder capabilities, re-
spectively.

agent_capability(proposal_mail_sender,

in_params([question,response_id,usermail]),

out_params([]),

precondition(email(user,usermail)),

ABSTRACT	
 DESCRIPTION	
 	

OF	
 A	
 CAPABILITY	

Bridging	
 WHAT	
 and	
 HOW	

user analyst dev team

CALENDAR

goal injection capability
deploy and

maintenance

bridge

WHAT (goal spec)

HOW (capabilities)WHEN pending(Meeting)
AND meeting datetime(DT)
AND attendee(Meeting,A)

THE system SHALL
PRODUCE

notified(A,Meeting,DT)

PROPOSAL MAIL SENDER

COLLECT_MAIL_RESPONSES

GOOGLE_CALENDAR_CHECK

MAILER

OR

To Call
Participants

To Check
Calendars

To Mail
Participants

AND

To Provide
Meeting

Scheduling

To
Schedule
Meetings

To Sent
Reminders

To Cancel
Meetings

To Run
Website

AND

To Collect
Timetables

To
Choose

Schedule

To
Choose
Location

[…] […]

[…] […]

[…]

MUSA RUNNING
SYSTEM

google

The	
 PROACTIVE	
 MEANS-­‐END	
 REASONING	
 	

is	
 the	
 problem	
 of	
 	

finding	
 the	
 minimal	
 set	
 of	
 capabili5es	
 (called	
 PMR	

Solu5on)	
 that	
 can	
 fully	
 address	
 a	
 goal	
 model,	
 given	
 the	

current	
 Wt.	
 	

The	
 PMR	
 Solu5on	

•  The	
 Proac5ve	
 Means-­‐End	
 Reasoning	
 is	
 different	

from	

– A	
 scheduling	
 problem:	
 it	
 does	
 not	
 require	
 an	
 exact	

5ming	
 of	
 the	
 ac5vi5es	

– A	
 planning	
 problem:	
 it	
 does	
 not	
 require	
 to	
 create	
 a	

plan	
 for	
 execu5ng	
 the	
 ac5vi5es	

•  The	
 system	
 will	
 contextually	
 evaluate	
 which	

capability	
 to	
 use,	
 when,	
 and	
 how.	

–  The	
 same	
 capability	
 in	
 the	
 PMR_Solu5on	
 will	

eventually	
 used	
 0..n	
 5mes	

The	
 proposed	
 algorithm	

•  It	
 is	
 based	
 on	
 the	
 ability	
 to	
 discover	
 if	
 a	

capability	
 can	
 be	
 used	
 for	
 addressing	
 a	
 goal	

(or	
 contribu5ng	
 to)	

•  The	
 principle	
 is	
 that	
 of	
 matching	
 Goal’s	
 TC/FS	

and	
 Capability’s	
 Pre/Post/Evolu5on	
 	

•  This	
 is	
 possible	
 if	
 goals	
 and	
 capabili5es	
 share	

– The	
 same	
 formalism	

– The	
 same	
 background	
 ontology	

The	
 State	
 of	
 World	
 as	
 	

Common	
 Formalism	

GOAL

SUBJECT
TRIGGER

CONDITION
FINAL
STATE

CONDITION STATE OF
THE WORLD

wants

is active when is addressed
when

CAPABILITY

is executable when

is correctly executed
when

PRE
CONDITION

POST
CONDITION EVOLUTION

to test over

generates

modifies

The	
 Ontology	
 as	
 	

Common	
 Background	

usrmsg

Meeting <<position>>
Attendee

<<position>>
Initiator Calendar

Timeslot

<<predicate>>
Confirmed

<<predicate>>
Canceled

<<predicate>>
Pending

<<action>>
Schedule

<<action>>
Accepted

<<action>>
Rejected

<<predicate>>
MinAttendees

Meeting
DateTime

<<predicate>>
Notified

<<position>>
User

is-a

is-a

Contact Info

Email Skype Id

<<predicate>>
Busy

ISO 8601
DateTime

is-a

is-a is-a

<<predicate>>
Free

Common	
 Background	
 (II)	

usrmsg

Meeting <<position>>
Attendee

<<position>>
Initiator Calendar

Timeslot

<<predicate>>
Confirmed

<<predicate>>
Canceled

<<predicate>>
Pending

<<action>>
Schedule

<<action>>
Accepted

<<action>>
Rejected

<<predicate>>
MinAttendees

Meeting
DateTime

<<predicate>>
Notified

<<position>>
User

is-a

is-a

Contact Info

Email Skype Id

<<predicate>>
Busy

ISO 8601
DateTime

is-a

is-a is-a

<<predicate>>
Free

WHEN	
 pending(Mee5ng)	
 AND	
 mee5ng	
 date5me(DT)	
 AND	

aXendee(Mee5ng,A)	
 THE	
 system	
 SHALL	
 PRODUCE	

no5fied(Mee5ng,	
 A)	

USER-­‐GOAL_01	

TABLE II
ABSTRACT SPECIFICATION OF THE PROPOSAL MAIL SENDER CAPABILITY.

Name PROPOSAL MAIL SENDER

InputParams QUESTION : TEXT,
RESPONSEID: STRING
USERMAIL : STRING

OutputParams NONE

Constraints format(UserMail,

RFC 5322 Address Specification)

Pre-Condition email(Usr, UserMail)

Post-Condition notified(Question, Usr)

Evolution evo = {add(notified(Msg, Usr)),
add(mailed(UserMail,Question))
add(questioned(Usr,ResponseId))}

TABLE III
ABSTRACT SPECIFICATION OF THE COLLECT RESPONSE CAPABILITY.

Name COLLECT MAIL RESPONSES

InputParams RESPONSEID : STRING

OutputParams RESPONSEARRAY : ARRAYOF(
RESPONSE(USR,{yes | not}))

Constraints NONE

Pre-Condition questioned(Usr,ResponseId))

Post-Condition accepted(Usr,ResponseId)_
rejected(Usr,ResponseId)

Evolution evo = {add(accepted(Usr,ResponseId))
add(rejected(Usr,ResponseId))
remove(questioned(Msg,ResponseId))}

purpose of this work, some simplifications have been assumed
for aiming at the core of this research problem.

The principle at the base of the approach is that a software
agent can store injected goals, its capabilities, the compu-
tational state and the execution process by using the same
belief baseFirst-order logic provides a well-understood model-
theoretic semantics and it enables characterization of reasoning
on goals and capabilities in terms of classical notions of
deduction and consistency [36].

The issue of implementing injected user-goals into a
BDI [30] agent has been already considered in some recent
works in literature [11]. Similarly, also annotating agent’s
capabilities/services with a first-order logic semantics is an
open branch of research [12].

Here is a couple of examples of how respectively Goal 1
and Goal 2 reported in Section III-B may be encoded in a
software agent’s belief base:

agent_goal(

params([usr,mtg] , [

category(usr, attendee),

category(mtg, meeting)]),

tr_condition(schedule(usr,mtg)),

final_state(or(

canceled(mtg),

confirmed(mtg))),

TABLE IV
ABSTRACT SPECIFICATION OF THE GOOGLE CALENDAR CHECK

CAPABILITY.

Name GOOGLE CALENDAR CHECK

InputParams SLOT : TIMESLOT, USERCALENDAR : CAL-
ENDAR

OutputParams RESPONSEARRAY : ARRAYOF(
SLOT(USR,{free | busy}))

Constraints format(Slot,
slot(dt(year,month, day, hour,minute),
dt(year,month, day, hour,minute)))

Pre-Condition calendar(Usr, UserCalendar)

Post-Condition free(Usr, T imeslot)_
busy(Usr, T imeslot)

Evolution evo = {add(notified(Msg, Usr)),
add(free(Usr, T imeslot))
add(busy(Usr, T imeslot))}

system

)

agent_goal(

params([mtg,dt,a], [

category(mtg, meeting),

category(dt, meetingdatetime),

category(a,attendee)) ,

tr_condition(and(

pending(mtg),

meeting_datetime(dt),

attendee(mtg,a))),

final_state(notified(a,mtg,dt),

system

)

This code has to be read as follows: the agent knows
to own a couple of goals. The first goal is linked to two
concepts of the ontology: Attendee and Meeting. It has, as
triggering condition, the formula schedule(usr,meeting) and,
as final state, a logical OR condition between two statements:
canceled(meeting) and confirmed(meeting). The second goal
grounds over three concepts of the domain: Meeting, Meeting-
DateTime and Attendee. The goal precondition is the logical
AND condition of three elements, whereas the final state is
the formula notified(a,mtg,dt).

The first advantage of having goals in the agent belief base
is that they can dynamically change during the agent life.
Indeed, new goals can be added into the belief-base, or existing
goals can be retreat. An injected goal is not automatically
committed by the agent through a plan (as it happens in many
rule-based systems): goal commitment is the result of agent
reasoning.

In a similar encoding style, the agent can also store ab-
stract capabilities. Here a couple of examples of the pro-
posal mail sender and collect mail responder capabilities, re-
spectively.

agent_capability(proposal_mail_sender,

in_params([question,response_id,usermail]),

out_params([]),

precondition(email(user,usermail)),

Planning-­‐Like	
 Space	
 Explora5on	

Name	
 Calendar_Timeslot_Check	

Pre-­‐condi5on	
 calendar(Usr,UserAccount)	

Post-­‐condi5on	
 free(Usr,TimeSlot)	
 OR	
 busy(Usr,TimeSlot)	

Evolu5on	
 evo={	
 add(verified_ts(Usr,TimeSlot))	
 }	

Name	
 Append_Mee7ng	

Pre-­‐condi5on	
 free(Usr,TimeSlot)	
 	

Post-­‐condi5on	
 busy(Usr,TimeSlot)	

Evolu5on	
 evo={	
 add(no5fied(Usr,Mee5ng))	
 }	

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,luca)
calendar(luca,lucas76)

goal
fulfillment

WHEN%pending(Mee.ng)%AND%mee.ng%date.me(DT)%AND%
a6endee(Mee.ng,A)%THE%system%SHALL%PRODUCE%
no.fied(A,Mee.ng)%

USERCGOAL_01%

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,luca)
verified_ts(luca,dt(12,04,2015))

CALENDAR
APPEND
MEETING

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,luca)
verified_ts(luca,meet_673)

notified(luca,meet_673)

Space	
 Explora5on	
 (II)	

Name	
 Proposal	
 Mail	
 Sender	

Pre-­‐condi5on	
 email(Usr,MailAddress)	

Post-­‐condi5on	
 ques5oned(Usr,Mee5ng)	

Evolu5on	
 evo={	
 add(ques5oned(Usr,Mee5ng)	
)	
 }	

Name	
 Collect	
 Mail	
 Response	

Pre-­‐condi5on	
 email(Usr,MailAddress)	

Post-­‐condi5on	
 accepted(Usr,Mee5ng)	
 OR	

rejected(Usr,Mee5ng)	
 	

Evolu5on	
 evo={	
 add(no5fied(Usr,Mee5ng)	
)	
 }	

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,john)
calendar(john, john.castel)

email(john, john@gmail.com)

WHEN%pending(Mee.ng)%AND%mee.ng%date.me(DT)%AND%
a6endee(Mee.ng,A)%THE%system%SHALL%PRODUCE%
no.fied(A,Mee.ng)%

USERCGOAL_01%

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,john)
calendar(john, john.castel)

email(john, john@gmail.com)
verified_ts(john,dt(12,04,2015))

CALENDAR
APPEND
MEETING
APPEND
MEETING

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,john)
calendar(john, john.castel)

email(john, john@gmail.com)
verified_ts(john,dt(12,04,2015))

notified(john,meet_673)

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,john)
calendar(john, john.castel)

email(john, john@gmail.com)
questioned(john,meet_673,dt(12,04,2015))

PROPOSAL
MAIL SENDER pending(meet_673)

meeting_datetime(dt(12,04,2015))
attendee(meet_673,john)

calendar(john, john.castel)
email(john, john@gmail.com)

questioned(john,meet_673,dt(12,04,2015))
notified(john,meet_673)

COLLECT MAIL
RESPONSE

Final	
 Remarks	
 –	
 Self	
 Adapta5on	

•  Self	
 Adapta5on	
 is	
 the	
 result	
 of	
 a	
 loop	
 in	
 which	

the	
 Proac5ve	
 Means-­‐End	
 Reasoning	
 is	
 executed	

every	
 5me	
 (with	
 different	
 WI)	

– New	
 goal-­‐model	
 is	
 injected	

– An	
 exis5ng	
 goal	
 changes	

– A	
 capability	
 fails:	
 	

•  sokware	
 failure	
 and	
 excep5ons	

•  the	
 generated	
 W	
 is	
 different	
 from	
 the	
 expected	
 one	

•  the	
 connected	
 resource	
 is	
 no	
 more	
 available	

– New	
 capability	
 is	
 injected	

monitor
goal injection

proactive
means-end
reasoning

goal
commitment

environment
monitoring

capability
execution

failure

unexpected
state

Future	
 Works	

•  The	
 planning	
 algorithm	
 is	
 inefficient	

–  In	
 some	
 circumstances	
 it	
 requires	
 an	
 exponen5al	
 5me	
 to	

complete.	

– We	
 are	
 planning	
 to	
 explore	
 many	
 strategies	
 for	
 improving	
 it	

•  SAT	
 solvers,	
 op5mized	
 planning	
 and	
 case	
 base	
 reasoning	

•  Scalability	
 is	
 limited	
 	

– We	
 are	
 studying	
 a	
 beXer	
 integra5on	
 with	
 a	
 Cloud	
 architecture	

(Open-­‐Stack)	

•  To	
 date	
 the	
 use	
 of	
 a	
 sta5c	
 ontology	
 enables	
 the	
 agent's	
 	

–  it	
 is	
 also	
 a	
 limit	
 when	
 capabili5es/goals	
 evolve	
 one	
 independently	

from	
 the	
 others.	
 	

–  In	
 order	
 to	
 enable	
 distributed	
 development-­‐teams,	
 we	
 are	

integra5ng	
 linguis5c	
 techniques	
 for	
 dealing	
 with	

•  conceptual	
 ambigui5es	
 and	
 linguis5cs	
 flaws,	
 similari5es	
 and	
 synonyms.	

Ques5ons?	

sabatucci@pa.icar.cnr.it	

hXps://github.com/icar-­‐aose/MUSA	

