
From	 Means-‐End	 Analysis	 to	
Proac5ve	 Means-‐End	 Reasoning	

Luca	 Sabatucci	 and	 Massimo	 Cossen5no	

SEAMS	 2015,	 Florence,	 May	 18-‐19	 	

The	 Vision	

service
provider

MUSA RUNNING SYSTEM

GOALS

user analyst

ACTIVE GOALS
CAPABILITIES

dev team

TASKS
REAL SERVICES

goal injection
capability

deploy and
maintenance

service
provider

service
provider

bridge

WHAT HOW

POD
ontology

commitment
ontology

commitment

Goal	 Oriented	 Requirements	

•  A	 goal	 is	 a	 state	 of	 affair	 that	 an	 actor	 wants	
to	 achieve	

II. FORMAL FOUNDATION

This section illustrates the theoretical background that in-
troduces the basic concepts of this paper.

A. State of the World Definition
We consider the software system has a (partial) knowledge

about the environment in which it runs. The classic way for
expressing this property is (Bel a ') [13] that specifies that a
software agent a believes ' is true, where ' is a generic state
of affair. We decided to limit the range of ' to first order
variable-free statements (facts). They are enough expressive
for representing an object of the environment, a particular
property of an object or a relationship among two ore more
objects. A fact is a statement to which it is possible to assign a
truth value. Examples are: tall(john) or likes(john,music).

Definition 1 (Subjective State of the World). We define the
subjective state of the world in a given time t as a set W t ⇢ S
where S is the set of all the (non-negated) facts (s1, s2 . . . sn)
that can be used in a given domain.

W t has the following characteristics:

W t = {s
i

2 S|(Bel a s
i

)} (1)

where a is the subjective point of view that believes all facts
in W t are true at time t; and

8s
i

, s
j

2 S if s
i

^ s
j

`? then
⇢
s
i

2 W t) s
j

62 W t

s
j

2 W t) s
i

62 W t

(2)

i.e.: the state of the world is a consistent subset of facts
with no (semantics) contradictions.

W t describes a closed-world in which everything that is
not explicitly declared is assumed to be false. An example
of W t is shown in Figure 1, whereas, for instance the set
{tall(john), small(john)} is not a valid state of world since
the two facts produce a semantic contradiction.

tall(john)

likes(john,music)

likes(john,pizza)

age(john,16)

W t

Fig. 1. Example of a State of the World configuration at time t.

A Condition of a state of the world is a logic formula
composed by predicates or variables, through the standard set
of logic connectives (¬,^,_). A condition may be tested
against a given W t through the operator of unification.

B. Goal Definition
In many Goal-Oriented requirement engineering methods

the definition of Goal [7] is: “a goal is a state of affair that
an actor wants to achieve”. We refined this statement to be
compatible with the definition of W t as: “a goal is a desired

change in the state of the world an actor wants to achieve”, in
line with [14]. Therefore, to make this definition operative, it is
useful to characterize a goal in terms of a triggering condition
and a final state.

Definition 2 (Goal). A goal is a pair: htc, fsi where tc
and fs are conditions to evaluate (over a state of the world)
respectively when the goal may be actively pursued (tc) and
when it is eventually addressed (fs). Moreover, given a W t we
say that

the goal is active iff tc(W t) ^ ¬fs(W t) = true

the goal is addressed iff fs(W t) = true.

It is worth noting that when the triggering condition is
trivially defined as true, then the above reported definition
coincides with the classical definition of Goal.

It follows the definition of goal model, inspired by [15]:

Definition 3 (Goal Model). A goal model is a directed
graph, (G,R) where G is a set of goals (nodes) and R is
the set of Refinement and Influence relationships (edges). In
a goal model there is exactly one root goal, and there are no
refinement cycles.

Figure 2 is the partial goal model, represented with the i*
notation, for the meeting scheduling case study. This example,
redesigned from [15], includes functional (hard) goals only,
and AND/OR refinements. The root goal is to provide meeting
scheduling services that is decomposed in schedule meet-
ings, send reminders, cancel meetings and running a website.
Therefore meetings are scheduled by collecting participant
timetables, choosing a schedule and choosing a location. Such
a model is useful for analysts to explore alternative ways for
fulfilling the root goal.

OR

To Call
Participants

To Check
Calendars

To Mail
Participants

AND

To Provide
Meeting

Scheduling

To
Schedule
Meetings

To Sent
Reminders

To Cancel
Meetings

To Run
Website

AND

To Collect
Timetables

To
Choose

Schedule

To
Choose
Location

[…] […]

[…] […]

[…]

Fig. 2. Portion of Goal Model taken from [15] for the Meeting Scheduling
case study. For reasons of space, the tree has been truncated (with respect to
the original one) where the symbol [. . .] appears.

C. Capability Definition

In many goal-oriented approaches, a Task is the operational-
ization of a Goal. This means that each task, in a goal model,
is associated to one (or more) leaf goal(s). This association is
made at design time as the result of a human activity called

GOAL	 MODEL	
To Mail

Participants

Mail
Questio
nnaire
Sender

MEANS-‐END	 ANALYSIS	

The	 State	 of	 the	 World	
•  A	 state	 of	 the	 world	 (Wt)	 is	 a	 dynamic	 object	
that	 describes	 the	 current	 “state	 of	 affair”	
– or	 beXer:	 what	 the	 system	 knows	 about	

•  We	 implement	 Wt	 by	 employing	 a	 set	 of	
seman5cally	 coherent	 first	 order	 logic	 facts.	

•  Wt	 describes	 a	 closed-‐world	 in	 which	
everything	 is	 not	 explicitly	 declared	 is	
assumed	 to	 be	 false.	

Opera5ve	 Implementa5on	 of	 Goal	

•  Goal's	 TC	 is	 the	 Condi5on	 that	 must	 hold	 in	 Wt	 in	 order	 the	 agent	
can	 ac5vely	 pursue	 that	 goal.	

•  Goal's	 FS	 is	 the	 Condi5on	 that	 must	 hold	 in	 Wt	 in	 order	 the	 goal	 can	
be	 marked	 as	 addressed.	

•  GOALSpec	 is	 a	 language	 conceived	 to	 inject	 goal	 specifica5ons	 in	 a	
human-‐friendly	 format	

GOAL LIFECYCLE

Injected ActiveReadycommit
FS=true

FS=false

TC=true

state failurecommitment failure

[maintain-goal]
[achieve-goal]

Addressed

goal retreat

goal injection

GOAL

SUBJECT
TRIGGER

CONDITION
FINAL
STATE

EVENT STATE OF
THE WORLD

wants

is active when is addressed
when

generated by composed of

Fig. 7. The Core Metamodel of the Goal Specification Language.

a Trigger Condition and a Final State. The subject is a noun
that describes the name of the involved person, role or group
of persons that owns the responsibility to address the goal. The
trigger condition is an event that must occur in order to start
acting for addressing the goal. The final state is the desired
state of the world that must be addressed.

It is worth underlining that both Trigger Conditions and
Final States must be expressed by using a State of the World,
that in turn is expressed through domain ontology predicates.

For a complete specification of the syntax of GoalSPEC
see [32]. Some examples of GoalSPEC productions for the
domain of the Meeting Scheduling are listed below:

1) WHEN schedule(Usr,Meeting) THE system SHALL
PRODUCE canceled(Meeting) OR confirmed(Meeting)

2) WHEN pending(Meeting) AND meeting datetime(DT) AND
attendee(Meeting,A) THE system SHALL PRODUCE
notified(A,Meeting,DT)

3) AFTER 2 days SINCE WHEN notified(Usr,Meeting,DT)
THE system SHALL PRODUCE accepted(Usr, Meeting,DT)
OR rejected(Usr, Meeting,DT)

Each of the items shown before are goals. For purpose of
clarity we put in uppercase the keywords of the language, and
in lowercase the domain specific predicates constrained by the
problem ontology (Figure 5). Goal 1 indicates that ‘when the
software agent knows a user is going to schedule a meeting,
then it should bring the meeting to a state of canceled or
confirmed’. Goal 2 states that ‘when a meeting is yet in a
state of pending, but a date-time is going to be proposed to a
set of attendees, then each of these attendees has to be notified
about’. Finally, Goal 3 says that ‘when two days past since
the notification has been sent, then the system must collect the
results (accepted or rejected)’.

After that a set of goals has been completed, it can be
injected into the running system, thus to let the system try to
address them. We called this mechanism goal injection [33].

C. A Capability Specification Language
In AI, the need for representing software agent’s actions

in order to implement reasoning directed towards action is a
long-dated point of discussion [13], [21], [22], [34]. An agent

is able to achieve a goal by doing an action if i) the agent
knows what the action is and ii) knows that doing the action
would result in the goal being satisfied [21]. This topic has
become even more current because the amount of services
deployed in the web is exponentially growing and researchers
are looking for ways for automatically searching, selecting and
composing them [35].

We use Capability as an internal representation of an atomic
unit of work that a software agent may use for addressing
changes in the state of the world. A Capability is made of
two components: an abstract description (a set of beliefs that
makes an agent aware of owning the capability and able to
reason on its use), and a concrete body implementation (a set
of plans for executing the job).

Whereas we define a template for providing the abstract
description of a capability, we do not provide any language for
the body, leaving the choice of the specific technology to the
developer. The proposed template (Table I) is a refinement of
that presented in [35] for LARKS (language for advertisement
and request for knowledge sharing).

TABLE I
TEMPLATE FOR DOCUMENTING A CAPABILITY DESCRIPTION.

Name Unique label used to refer to the capability

InputParams Definition of the input variables necessary for
the execution.

OutputParams Definition of the output variables produced by
the execution.

Constraints Optional (logical or structural) constraints on
input/output variables.

Pre-Condition Condition that must hold in the current state of
the world in order to execute the capability.

Post-Condition Condition that must hold in the final state of
the world in order to assert the capability has
been correctly executed.

Evolution Function of evolution evo : W �! W as
described in Section II

Tables II and III are two examples of capabilities that work
with emails. The Proposal Mail Sender capability encodes
a question into the content of an email, thus the receiver
can select two links, for answering yes or no. The second
capability, Collect Response, looks at all the received answers
to a given question and returns an array in which there is an
item for each user who replied.

There is also a special category of capabilities that is Cloud
Capability. These capabilities have been created for interacting
with a REST application on the cloud. An example is the
Google Calendar Check capability reported in Table IV. The
aim of this capability is to interact with users’ google calendar
account for obtaining whether a given time slot is free or busy.

D. Implementing Self-Awareness

Reasoning about knowledge and belief is still an issue
of concern in philosophy and artificial intelligence. For the

GOAL

SUBJECT
TRIGGER

CONDITION
FINAL
STATE

EVENT STATE OF
THE WORLD

wants

is active when is addressed
when

generated by composed of

Fig. 7. The Core Metamodel of the Goal Specification Language.

a Trigger Condition and a Final State. The subject is a noun
that describes the name of the involved person, role or group
of persons that owns the responsibility to address the goal. The
trigger condition is an event that must occur in order to start
acting for addressing the goal. The final state is the desired
state of the world that must be addressed.

It is worth underlining that both Trigger Conditions and
Final States must be expressed by using a State of the World,
that in turn is expressed through domain ontology predicates.

For a complete specification of the syntax of GoalSPEC
see [32]. Some examples of GoalSPEC productions for the
domain of the Meeting Scheduling are listed below:

1) WHEN schedule(Usr,Meeting) THE system SHALL
PRODUCE canceled(Meeting) OR confirmed(Meeting)

2) WHEN pending(Meeting) AND meeting datetime(DT) AND
attendee(Meeting,A) THE system SHALL PRODUCE
notified(A,Meeting,DT)

3) AFTER 2 days SINCE WHEN notified(Usr,Meeting,DT)
THE system SHALL PRODUCE accepted(Usr, Meeting,DT)
OR rejected(Usr, Meeting,DT)

Each of the items shown before are goals. For purpose of
clarity we put in uppercase the keywords of the language, and
in lowercase the domain specific predicates constrained by the
problem ontology (Figure 5). Goal 1 indicates that ‘when the
software agent knows a user is going to schedule a meeting,
then it should bring the meeting to a state of canceled or
confirmed’. Goal 2 states that ‘when a meeting is yet in a
state of pending, but a date-time is going to be proposed to a
set of attendees, then each of these attendees has to be notified
about’. Finally, Goal 3 says that ‘when two days past since
the notification has been sent, then the system must collect the
results (accepted or rejected)’.

After that a set of goals has been completed, it can be
injected into the running system, thus to let the system try to
address them. We called this mechanism goal injection [33].

C. A Capability Specification Language
In AI, the need for representing software agent’s actions

in order to implement reasoning directed towards action is a
long-dated point of discussion [13], [21], [22], [34]. An agent

is able to achieve a goal by doing an action if i) the agent
knows what the action is and ii) knows that doing the action
would result in the goal being satisfied [21]. This topic has
become even more current because the amount of services
deployed in the web is exponentially growing and researchers
are looking for ways for automatically searching, selecting and
composing them [35].

We use Capability as an internal representation of an atomic
unit of work that a software agent may use for addressing
changes in the state of the world. A Capability is made of
two components: an abstract description (a set of beliefs that
makes an agent aware of owning the capability and able to
reason on its use), and a concrete body implementation (a set
of plans for executing the job).

Whereas we define a template for providing the abstract
description of a capability, we do not provide any language for
the body, leaving the choice of the specific technology to the
developer. The proposed template (Table I) is a refinement of
that presented in [35] for LARKS (language for advertisement
and request for knowledge sharing).

TABLE I
TEMPLATE FOR DOCUMENTING A CAPABILITY DESCRIPTION.

Name Unique label used to refer to the capability

InputParams Definition of the input variables necessary for
the execution.

OutputParams Definition of the output variables produced by
the execution.

Constraints Optional (logical or structural) constraints on
input/output variables.

Pre-Condition Condition that must hold in the current state of
the world in order to execute the capability.

Post-Condition Condition that must hold in the final state of
the world in order to assert the capability has
been correctly executed.

Evolution Function of evolution evo : W �! W as
described in Section II

Tables II and III are two examples of capabilities that work
with emails. The Proposal Mail Sender capability encodes
a question into the content of an email, thus the receiver
can select two links, for answering yes or no. The second
capability, Collect Response, looks at all the received answers
to a given question and returns an array in which there is an
item for each user who replied.

There is also a special category of capabilities that is Cloud
Capability. These capabilities have been created for interacting
with a REST application on the cloud. An example is the
Google Calendar Check capability reported in Table IV. The
aim of this capability is to interact with users’ google calendar
account for obtaining whether a given time slot is free or busy.

D. Implementing Self-Awareness

Reasoning about knowledge and belief is still an issue
of concern in philosophy and artificial intelligence. For the

USER-‐GOAL_01	 USER-‐GOAL_02	

AI-‐Style	 CAPABILITIES	

•  The	 system	 owns	 a	 set	 of	 capabili5es,	 i.e.	 atomic	
and	 self-‐contained	 ac5ons	

•  The	 effect	 of	 a	 capability	 is	 an	 endogenous	
evolu5on	 of	 Wt	 	

•  The	 system	 is	 aware	 of	 its	 capabili5es	
•  and	 it	 is	 aware	 of	 ‘when’	 and	 ‘how’	 to	 use	 a	
capability	 in	 order	 to	 address	 a	 desired	 result	 TABLE II

ABSTRACT SPECIFICATION OF THE PROPOSAL MAIL SENDER CAPABILITY.

Name PROPOSAL MAIL SENDER

InputParams QUESTION : TEXT,
RESPONSEID: STRING
USERMAIL : STRING

OutputParams NONE

Constraints format(UserMail,

RFC 5322 Address Specification)

Pre-Condition email(Usr, UserMail)

Post-Condition notified(Question, Usr)

Evolution evo = {add(notified(Msg, Usr)),
add(mailed(UserMail,Question))
add(questioned(Usr,ResponseId))}

TABLE III
ABSTRACT SPECIFICATION OF THE COLLECT RESPONSE CAPABILITY.

Name COLLECT MAIL RESPONSES

InputParams RESPONSEID : STRING

OutputParams RESPONSEARRAY : ARRAYOF(
RESPONSE(USR,{yes | not}))

Constraints NONE

Pre-Condition questioned(Usr,ResponseId))

Post-Condition accepted(Usr,ResponseId)_
rejected(Usr,ResponseId)

Evolution evo = {add(accepted(Usr,ResponseId))
add(rejected(Usr,ResponseId))
remove(questioned(Msg,ResponseId))}

purpose of this work, some simplifications have been assumed
for aiming at the core of this research problem.

The principle at the base of the approach is that a software
agent can store injected goals, its capabilities, the compu-
tational state and the execution process by using the same
belief baseFirst-order logic provides a well-understood model-
theoretic semantics and it enables characterization of reasoning
on goals and capabilities in terms of classical notions of
deduction and consistency [36].

The issue of implementing injected user-goals into a
BDI [30] agent has been already considered in some recent
works in literature [11]. Similarly, also annotating agent’s
capabilities/services with a first-order logic semantics is an
open branch of research [12].

Here is a couple of examples of how respectively Goal 1
and Goal 2 reported in Section III-B may be encoded in a
software agent’s belief base:

agent_goal(

params([usr,mtg] , [

category(usr, attendee),

category(mtg, meeting)]),

tr_condition(schedule(usr,mtg)),

final_state(or(

canceled(mtg),

confirmed(mtg))),

TABLE IV
ABSTRACT SPECIFICATION OF THE GOOGLE CALENDAR CHECK

CAPABILITY.

Name GOOGLE CALENDAR CHECK

InputParams SLOT : TIMESLOT, USERCALENDAR : CAL-
ENDAR

OutputParams RESPONSEARRAY : ARRAYOF(
SLOT(USR,{free | busy}))

Constraints format(Slot,
slot(dt(year,month, day, hour,minute),
dt(year,month, day, hour,minute)))

Pre-Condition calendar(Usr, UserCalendar)

Post-Condition free(Usr, T imeslot)_
busy(Usr, T imeslot)

Evolution evo = {add(notified(Msg, Usr)),
add(free(Usr, T imeslot))
add(busy(Usr, T imeslot))}

system

)

agent_goal(

params([mtg,dt,a], [

category(mtg, meeting),

category(dt, meetingdatetime),

category(a,attendee)) ,

tr_condition(and(

pending(mtg),

meeting_datetime(dt),

attendee(mtg,a))),

final_state(notified(a,mtg,dt),

system

)

This code has to be read as follows: the agent knows
to own a couple of goals. The first goal is linked to two
concepts of the ontology: Attendee and Meeting. It has, as
triggering condition, the formula schedule(usr,meeting) and,
as final state, a logical OR condition between two statements:
canceled(meeting) and confirmed(meeting). The second goal
grounds over three concepts of the domain: Meeting, Meeting-
DateTime and Attendee. The goal precondition is the logical
AND condition of three elements, whereas the final state is
the formula notified(a,mtg,dt).

The first advantage of having goals in the agent belief base
is that they can dynamically change during the agent life.
Indeed, new goals can be added into the belief-base, or existing
goals can be retreat. An injected goal is not automatically
committed by the agent through a plan (as it happens in many
rule-based systems): goal commitment is the result of agent
reasoning.

In a similar encoding style, the agent can also store ab-
stract capabilities. Here a couple of examples of the pro-
posal mail sender and collect mail responder capabilities, re-
spectively.

agent_capability(proposal_mail_sender,

in_params([question,response_id,usermail]),

out_params([]),

precondition(email(user,usermail)),

ABSTRACT	 DESCRIPTION	 	
OF	 A	 CAPABILITY	

Bridging	 WHAT	 and	 HOW	

user analyst dev team

CALENDAR

goal injection capability
deploy and

maintenance

bridge

WHAT (goal spec)

HOW (capabilities)WHEN pending(Meeting)
AND meeting datetime(DT)
AND attendee(Meeting,A)

THE system SHALL
PRODUCE

notified(A,Meeting,DT)

PROPOSAL MAIL SENDER

COLLECT_MAIL_RESPONSES

GOOGLE_CALENDAR_CHECK

MAILER

OR

To Call
Participants

To Check
Calendars

To Mail
Participants

AND

To Provide
Meeting

Scheduling

To
Schedule
Meetings

To Sent
Reminders

To Cancel
Meetings

To Run
Website

AND

To Collect
Timetables

To
Choose

Schedule

To
Choose
Location

[…] […]

[…] […]

[…]

MUSA RUNNING
SYSTEM

google

The	 PROACTIVE	 MEANS-‐END	 REASONING	 	
is	 the	 problem	 of	 	

finding	 the	 minimal	 set	 of	 capabili5es	 (called	 PMR	
Solu5on)	 that	 can	 fully	 address	 a	 goal	 model,	 given	 the	

current	 Wt.	 	

The	 PMR	 Solu5on	
•  The	 Proac5ve	 Means-‐End	 Reasoning	 is	 different	
from	
– A	 scheduling	 problem:	 it	 does	 not	 require	 an	 exact	
5ming	 of	 the	 ac5vi5es	

– A	 planning	 problem:	 it	 does	 not	 require	 to	 create	 a	
plan	 for	 execu5ng	 the	 ac5vi5es	

•  The	 system	 will	 contextually	 evaluate	 which	
capability	 to	 use,	 when,	 and	 how.	
–  The	 same	 capability	 in	 the	 PMR_Solu5on	 will	
eventually	 used	 0..n	 5mes	

The	 proposed	 algorithm	

•  It	 is	 based	 on	 the	 ability	 to	 discover	 if	 a	
capability	 can	 be	 used	 for	 addressing	 a	 goal	
(or	 contribu5ng	 to)	

•  The	 principle	 is	 that	 of	 matching	 Goal’s	 TC/FS	
and	 Capability’s	 Pre/Post/Evolu5on	 	

•  This	 is	 possible	 if	 goals	 and	 capabili5es	 share	
– The	 same	 formalism	
– The	 same	 background	 ontology	

The	 State	 of	 World	 as	 	
Common	 Formalism	

GOAL

SUBJECT
TRIGGER

CONDITION
FINAL
STATE

CONDITION STATE OF
THE WORLD

wants

is active when is addressed
when

CAPABILITY

is executable when

is correctly executed
when

PRE
CONDITION

POST
CONDITION EVOLUTION

to test over

generates

modifies

The	 Ontology	 as	 	
Common	 Background	

usrmsg

Meeting <<position>>
Attendee

<<position>>
Initiator Calendar

Timeslot

<<predicate>>
Confirmed

<<predicate>>
Canceled

<<predicate>>
Pending

<<action>>
Schedule

<<action>>
Accepted

<<action>>
Rejected

<<predicate>>
MinAttendees

Meeting
DateTime

<<predicate>>
Notified

<<position>>
User

is-a

is-a

Contact Info

Email Skype Id

<<predicate>>
Busy

ISO 8601
DateTime

is-a

is-a is-a

<<predicate>>
Free

Common	 Background	 (II)	

usrmsg

Meeting <<position>>
Attendee

<<position>>
Initiator Calendar

Timeslot

<<predicate>>
Confirmed

<<predicate>>
Canceled

<<predicate>>
Pending

<<action>>
Schedule

<<action>>
Accepted

<<action>>
Rejected

<<predicate>>
MinAttendees

Meeting
DateTime

<<predicate>>
Notified

<<position>>
User

is-a

is-a

Contact Info

Email Skype Id

<<predicate>>
Busy

ISO 8601
DateTime

is-a

is-a is-a

<<predicate>>
Free

WHEN	 pending(Mee5ng)	 AND	 mee5ng	 date5me(DT)	 AND	
aXendee(Mee5ng,A)	 THE	 system	 SHALL	 PRODUCE	
no5fied(Mee5ng,	 A)	

USER-‐GOAL_01	

TABLE II
ABSTRACT SPECIFICATION OF THE PROPOSAL MAIL SENDER CAPABILITY.

Name PROPOSAL MAIL SENDER

InputParams QUESTION : TEXT,
RESPONSEID: STRING
USERMAIL : STRING

OutputParams NONE

Constraints format(UserMail,

RFC 5322 Address Specification)

Pre-Condition email(Usr, UserMail)

Post-Condition notified(Question, Usr)

Evolution evo = {add(notified(Msg, Usr)),
add(mailed(UserMail,Question))
add(questioned(Usr,ResponseId))}

TABLE III
ABSTRACT SPECIFICATION OF THE COLLECT RESPONSE CAPABILITY.

Name COLLECT MAIL RESPONSES

InputParams RESPONSEID : STRING

OutputParams RESPONSEARRAY : ARRAYOF(
RESPONSE(USR,{yes | not}))

Constraints NONE

Pre-Condition questioned(Usr,ResponseId))

Post-Condition accepted(Usr,ResponseId)_
rejected(Usr,ResponseId)

Evolution evo = {add(accepted(Usr,ResponseId))
add(rejected(Usr,ResponseId))
remove(questioned(Msg,ResponseId))}

purpose of this work, some simplifications have been assumed
for aiming at the core of this research problem.

The principle at the base of the approach is that a software
agent can store injected goals, its capabilities, the compu-
tational state and the execution process by using the same
belief baseFirst-order logic provides a well-understood model-
theoretic semantics and it enables characterization of reasoning
on goals and capabilities in terms of classical notions of
deduction and consistency [36].

The issue of implementing injected user-goals into a
BDI [30] agent has been already considered in some recent
works in literature [11]. Similarly, also annotating agent’s
capabilities/services with a first-order logic semantics is an
open branch of research [12].

Here is a couple of examples of how respectively Goal 1
and Goal 2 reported in Section III-B may be encoded in a
software agent’s belief base:

agent_goal(

params([usr,mtg] , [

category(usr, attendee),

category(mtg, meeting)]),

tr_condition(schedule(usr,mtg)),

final_state(or(

canceled(mtg),

confirmed(mtg))),

TABLE IV
ABSTRACT SPECIFICATION OF THE GOOGLE CALENDAR CHECK

CAPABILITY.

Name GOOGLE CALENDAR CHECK

InputParams SLOT : TIMESLOT, USERCALENDAR : CAL-
ENDAR

OutputParams RESPONSEARRAY : ARRAYOF(
SLOT(USR,{free | busy}))

Constraints format(Slot,
slot(dt(year,month, day, hour,minute),
dt(year,month, day, hour,minute)))

Pre-Condition calendar(Usr, UserCalendar)

Post-Condition free(Usr, T imeslot)_
busy(Usr, T imeslot)

Evolution evo = {add(notified(Msg, Usr)),
add(free(Usr, T imeslot))
add(busy(Usr, T imeslot))}

system

)

agent_goal(

params([mtg,dt,a], [

category(mtg, meeting),

category(dt, meetingdatetime),

category(a,attendee)) ,

tr_condition(and(

pending(mtg),

meeting_datetime(dt),

attendee(mtg,a))),

final_state(notified(a,mtg,dt),

system

)

This code has to be read as follows: the agent knows
to own a couple of goals. The first goal is linked to two
concepts of the ontology: Attendee and Meeting. It has, as
triggering condition, the formula schedule(usr,meeting) and,
as final state, a logical OR condition between two statements:
canceled(meeting) and confirmed(meeting). The second goal
grounds over three concepts of the domain: Meeting, Meeting-
DateTime and Attendee. The goal precondition is the logical
AND condition of three elements, whereas the final state is
the formula notified(a,mtg,dt).

The first advantage of having goals in the agent belief base
is that they can dynamically change during the agent life.
Indeed, new goals can be added into the belief-base, or existing
goals can be retreat. An injected goal is not automatically
committed by the agent through a plan (as it happens in many
rule-based systems): goal commitment is the result of agent
reasoning.

In a similar encoding style, the agent can also store ab-
stract capabilities. Here a couple of examples of the pro-
posal mail sender and collect mail responder capabilities, re-
spectively.

agent_capability(proposal_mail_sender,

in_params([question,response_id,usermail]),

out_params([]),

precondition(email(user,usermail)),

Planning-‐Like	 Space	 Explora5on	

Name	 Calendar_Timeslot_Check	

Pre-‐condi5on	 calendar(Usr,UserAccount)	

Post-‐condi5on	 free(Usr,TimeSlot)	 OR	 busy(Usr,TimeSlot)	

Evolu5on	 evo={	 add(verified_ts(Usr,TimeSlot))	 }	

Name	 Append_Mee7ng	

Pre-‐condi5on	 free(Usr,TimeSlot)	 	

Post-‐condi5on	 busy(Usr,TimeSlot)	

Evolu5on	 evo={	 add(no5fied(Usr,Mee5ng))	 }	

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,luca)
calendar(luca,lucas76)

goal
fulfillment

WHEN%pending(Mee.ng)%AND%mee.ng%date.me(DT)%AND%
a6endee(Mee.ng,A)%THE%system%SHALL%PRODUCE%
no.fied(A,Mee.ng)%

USERCGOAL_01%

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,luca)
verified_ts(luca,dt(12,04,2015))

CALENDAR
APPEND
MEETING

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,luca)
verified_ts(luca,meet_673)

notified(luca,meet_673)

Space	 Explora5on	 (II)	

Name	 Proposal	 Mail	 Sender	

Pre-‐condi5on	 email(Usr,MailAddress)	

Post-‐condi5on	 ques5oned(Usr,Mee5ng)	

Evolu5on	 evo={	 add(ques5oned(Usr,Mee5ng))	 }	

Name	 Collect	 Mail	 Response	

Pre-‐condi5on	 email(Usr,MailAddress)	

Post-‐condi5on	 accepted(Usr,Mee5ng)	 OR	
rejected(Usr,Mee5ng)	 	

Evolu5on	 evo={	 add(no5fied(Usr,Mee5ng))	 }	

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,john)
calendar(john, john.castel)

email(john, john@gmail.com)

WHEN%pending(Mee.ng)%AND%mee.ng%date.me(DT)%AND%
a6endee(Mee.ng,A)%THE%system%SHALL%PRODUCE%
no.fied(A,Mee.ng)%

USERCGOAL_01%

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,john)
calendar(john, john.castel)

email(john, john@gmail.com)
verified_ts(john,dt(12,04,2015))

CALENDAR
APPEND
MEETING
APPEND
MEETING

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,john)
calendar(john, john.castel)

email(john, john@gmail.com)
verified_ts(john,dt(12,04,2015))

notified(john,meet_673)

pending(meet_673)
meeting_datetime(dt(12,04,2015))

attendee(meet_673,john)
calendar(john, john.castel)

email(john, john@gmail.com)
questioned(john,meet_673,dt(12,04,2015))

PROPOSAL
MAIL SENDER pending(meet_673)

meeting_datetime(dt(12,04,2015))
attendee(meet_673,john)

calendar(john, john.castel)
email(john, john@gmail.com)

questioned(john,meet_673,dt(12,04,2015))
notified(john,meet_673)

COLLECT MAIL
RESPONSE

Final	 Remarks	 –	 Self	 Adapta5on	
•  Self	 Adapta5on	 is	 the	 result	 of	 a	 loop	 in	 which	
the	 Proac5ve	 Means-‐End	 Reasoning	 is	 executed	
every	 5me	 (with	 different	 WI)	
– New	 goal-‐model	 is	 injected	
– An	 exis5ng	 goal	 changes	
– A	 capability	 fails:	 	
•  sokware	 failure	 and	 excep5ons	
•  the	 generated	 W	 is	 different	 from	 the	 expected	 one	
•  the	 connected	 resource	 is	 no	 more	 available	

– New	 capability	 is	 injected	

monitor
goal injection

proactive
means-end
reasoning

goal
commitment

environment
monitoring

capability
execution

failure

unexpected
state

Future	 Works	
•  The	 planning	 algorithm	 is	 inefficient	
–  In	 some	 circumstances	 it	 requires	 an	 exponen5al	 5me	 to	
complete.	

– We	 are	 planning	 to	 explore	 many	 strategies	 for	 improving	 it	
•  SAT	 solvers,	 op5mized	 planning	 and	 case	 base	 reasoning	

•  Scalability	 is	 limited	 	
– We	 are	 studying	 a	 beXer	 integra5on	 with	 a	 Cloud	 architecture	
(Open-‐Stack)	

•  To	 date	 the	 use	 of	 a	 sta5c	 ontology	 enables	 the	 agent's	 	
–  it	 is	 also	 a	 limit	 when	 capabili5es/goals	 evolve	 one	 independently	
from	 the	 others.	 	

–  In	 order	 to	 enable	 distributed	 development-‐teams,	 we	 are	
integra5ng	 linguis5c	 techniques	 for	 dealing	 with	
•  conceptual	 ambigui5es	 and	 linguis5cs	 flaws,	 similari5es	 and	 synonyms.	

Ques5ons?	

sabatucci@pa.icar.cnr.it	

hXps://github.com/icar-‐aose/MUSA	

