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Stochastic Search 
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•B. H. C. Cheng, A. J. Ramirez, and P. K. McKinley, “Harnessing evolutionary 
computation to enable dynamically adaptive systems to manage 
uncertainty” 
• G. G. Pascual, M. Pinto, and L. Fuentes, “Run-time adaptation of mobile 
applications using genetic algorithms” 
•P. Zoghi, M. Shtern, and M. Litoiu, “Designing search based adaptive 
systems: A quantitative approach” 
•M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H. Moghadam, S. Yoo, and F. 
Wu, “Genetic improvement for adaptive software engineering (keynote)” 



Self-Adaptive System 
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Requirements for Stochastic 
Techniques 
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• Possible Solution Creation 

– Randomly create a tree of tactics 

• Objective Function 

– Example: -20 responseTimenorm – costnorm + 
qualitynorm –  timenorm  

– Use PRISM to evaluate the score of each final 
state in the plan and the probability of reaching 
each final state 
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ZNN.com 
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Proof of Concept 
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Plans 
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[(if (add-server(1)) 
    (add-database-thread(A,1))     
    (decrease-quality))), 
add-database-thread(B,2)] 



Experiments 

• Improving a bad plan 
– Show that subpar inputs do not cause subpar 

results 

• Comparing different utility functions 
– Understand how changes in the utility function 

affects plans 

• Planning with similar utility functions 
– Can plans be used to create new plans for a 

similar goal? 
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Improving a Bad Plan 

• Utility Function:  -20 responseTimenorm  

 – costnorm + qualitynorm –  timenorm  

• Initial Plan: 
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Improving a Bad Plan 

• Results: 
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Comparing Utility Changes 

• Utility Function : -10 responseTimenorm  

 –  costnorm +  qualitynorm  –  timenorm  

• Results: 
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Comparing Utility Changes 

• Utility Function : -2 responseTimenorm  

 –  2 costnorm + qualitynorm –  timenorm 

• Results: 
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Planning with Similar Utility Functions  

• Utility Function: -10 responseTimenorm  

 –  costnorm + qualitynorm  –  timenorm  

• Results: 
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Experiment Conclusions 

• The planner can handle erroneous user 
provided plans 

• The planner can handle multiple objectives 

• The planner can provide unexpected 
knowledge about the search space 

• The planner can use information from 
previously generated plans to make new plans 
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Future Ideas 

• Test the planner on a system with more tactics 
– Compare to deterministic planners 

• Incorporate feedback from the system monitor  
– If adaption fails, is it likely to fail again? 
– Partially effective adaptations – timing issues 

• Adapting similar plans to a new situation 
• Catalogue when stochastic techniques are 

effective 
• Improve human trust in plans/ stochastically 

generated plans 
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Summary 

• Stochastic search shows promise for handling the 
future complexity of self-adaptive systems 

• Demonstrate the benefits of stochastic search 
with a proof of concept genetic programming 
planner 

• 3 experiments demonstrate the potential of our 
planner 

•  There are many research problems for applying 
stochastic search to self adaptive systems  
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