
SASS: Self-Adaptation using
Stochastic Search

Zack Coker, David Garlan,
Claire Le Goues

School of Computer Science
Carnegie Mellon University

1/20

2/20

Smart Traffic
Systems

Smart Grids

Smart Buildings Smart Farms

Stochastic Search

3/20

Goal

Already
Searched

Deterministic Stochastic

Stochastic Search

4/20

Stochastic Search

5/20

•B. H. C. Cheng, A. J. Ramirez, and P. K. McKinley, “Harnessing evolutionary
computation to enable dynamically adaptive systems to manage
uncertainty”
• G. G. Pascual, M. Pinto, and L. Fuentes, “Run-time adaptation of mobile
applications using genetic algorithms”
•P. Zoghi, M. Shtern, and M. Litoiu, “Designing search based adaptive
systems: A quantitative approach”
•M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H. Moghadam, S. Yoo, and F.
Wu, “Genetic improvement for adaptive software engineering (keynote)”

Self-Adaptive System

6/20

Requirements for Stochastic
Techniques

7/20

• Possible Solution Creation

– Randomly create a tree of tactics

• Objective Function

– Example: -20 responseTimenorm – costnorm +
qualitynorm – timenorm

– Use PRISM to evaluate the score of each final
state in the plan and the probability of reaching
each final state

Possible
Initial Plan

8/20

Plan

Mutate

Plan Plan

Plan

Plan

Plan

Plan

Plan

Response Time

Quality
Time

Evaluate

Plan

Discard

Final Result

Plan

Cost

ZNN.com

9/20

Proof of Concept

10/20

Plans

11/20

[(if (add-server(1))
 (add-database-thread(A,1))
 (decrease-quality))),
add-database-thread(B,2)]

Experiments

• Improving a bad plan
– Show that subpar inputs do not cause subpar

results

• Comparing different utility functions
– Understand how changes in the utility function

affects plans

• Planning with similar utility functions
– Can plans be used to create new plans for a

similar goal?

12/20

Improving a Bad Plan

• Utility Function: -20 responseTimenorm

 – costnorm + qualitynorm – timenorm

• Initial Plan:

13/20

Improving a Bad Plan

• Results:

14/20

Comparing Utility Changes

• Utility Function : -10 responseTimenorm

 – costnorm + qualitynorm – timenorm

• Results:

15/20

Comparing Utility Changes

• Utility Function : -2 responseTimenorm

 – 2 costnorm + qualitynorm – timenorm

• Results:

16/20

Planning with Similar Utility Functions

• Utility Function: -10 responseTimenorm

 – costnorm + qualitynorm – timenorm

• Results:

17/20

Experiment Conclusions

• The planner can handle erroneous user
provided plans

• The planner can handle multiple objectives

• The planner can provide unexpected
knowledge about the search space

• The planner can use information from
previously generated plans to make new plans

18/20

Future Ideas

• Test the planner on a system with more tactics
– Compare to deterministic planners

• Incorporate feedback from the system monitor
– If adaption fails, is it likely to fail again?
– Partially effective adaptations – timing issues

• Adapting similar plans to a new situation
• Catalogue when stochastic techniques are

effective
• Improve human trust in plans/ stochastically

generated plans

19/20

Summary

• Stochastic search shows promise for handling the
future complexity of self-adaptive systems

• Demonstrate the benefits of stochastic search
with a proof of concept genetic programming
planner

• 3 experiments demonstrate the potential of our
planner

• There are many research problems for applying
stochastic search to self adaptive systems

20/20

