Automated Generation of Adaptive Test Plans for

Self-Adaptive Systems

1>

Erik Fredericks and Betty H. C. Cheng
May 19t, 2015

Motivation

= Run-time testing provides assurance for self-adaptive systems
(SAS)

= An SAS can experience uncertainty, possibly rendering test cases
created at design time irrelevant

= Proteus ensures that test suites and
test cases remain relevant throughout
SAS execution

Background

Proteus approach

Case study

= Discussion

Impact of run-time testing

= Discussion

Related work

Background

Remote data mirroring
Goal-oriented requirements engineering

Software testing

Remote Data Mirroring Application

RDM [veitch2003 keeton2004] Provides:

= Data protection

= Prevents data loss and maintains availability
= Stores data in physically remote locations

= Represented as an SAS

Remote Data Mirroring Application

Seattle A
i Washingt No
ington o
Montana DaK Quebec Clty/\/w
J
Minnesota t
o Ottawa Montreal
Portland Minneapolis .
South CJ Maine
Dakota Wistonsin A Vermont
Oregon Michigan oronto
Y Idaho 9 =] New
Wyoming Milwaukee o) New York Hampshire
Denoi Massachusetts
lowa Chl(c:)ago :
Nebraska Connecticut*__ ppode Island
Ohio Pennsylvania Newovork
Denver . lllinois Indiana Philadelphia
Nevada o ni a o oColumbus o A
United States Kansas City Indianapolis and REGETET
Utah Torad: (o} West
o Sacramento Solorsdo o Virginia Delaware
RETEEEs Missouri St. Louis
o Sy
San i i Kentuck Virginia Dlst[lctpf
Francisco California Y 9 Columbia
Las \éegas
North
Tennessee
Albuquerque Oklahoma i
qo Y Arkansas Charlotteo Carolina
Los Angeles i .
Og Arizona New Mexico Atlgnta South
o Phoenix Mississippi Carolina
DaclJlaS Alabama
e Tucson Ciudad i
San Diego S o s Georgia
ustin i Jacksonville
[} Louisiana o
= . o
y \/ San Antonio © Houston
Chihuahua
o
T8MPag Fiorida
Gulfof 1
California 2.
Monterrey . S - Mlgml
2 Gulf of
Mexico The

Ne\
Bruns)

Networ

k Connections

: —- e
\3 AT
Segnle
Washington Quebec City/\/ Nev
Montana o [Bruns)
Ottawa Montreal
o o o
Portland Maine
Vermont
Oregon Michigan Torgnto e
Milwaukee o Sewdk New York Hampshire
Chi E'O' Massachusetts
lowa I(C:)ago c :
ka onnecticut*__ ghode Island
ohio Pennsylvania Neonork
5 Philadelphia
Denver Indiana oColumbus s o o=
[} Kandad it d NewJersey
Utah y
Colorado Delaware
. . O Virginia
O Sac Missouri St. Louis g
X District of
San P Kentucky c ¢
r olumbia
EYertiaco California
Las Vegas
2 North
Tennessee
Oklahoma i
Albquerque ATkansas Charlotteo Cafolina
Bos Angeles Arizona Atlanta South
Pl o i
L PR ok ississippi Carolina
allas
) Alabama .
Q7 Tucson Ciudad N Georgia
SanDiego N Q Juarez
e Jacksonville
[} Louisiana o
Ao A O
v \/ San Antonio © Houston
Chihuahua \
o
\ Tampag ioriga
Gulfof \
California ianad
Monterrey . S M‘g’“‘
o Gulf of
Mexico The

o

~J

Segnle
Washington
o
Portland

Oregon

)
San

EYertiaco California

Los Angeles
o

Q
San Diego

_J&f\&

Dropped Messa

EA—
Nol
D=k Quebec City/\/ Ne\
Montana o [Bruns)
Mini.sota !
Ottawa Montreal
e o o
Minneapoi.= 3
south ¢ Maine
[;:kl:)ta wisconsin Vermont
e Michigan Joronto New
aho 1
Wyoming Milwaukee o ! New York HAMBEhIE
Detrolt Massachusetts
lowa Chi(c:)ago
Nebra: ka Connecticut = ghode Island
ohio Pennsylvania Neonork
Denver United Stat lllinois Indiana 8 Columbilé Philadelphiao =
o2z o ni a ; oC— 7 New <
Utah Sse €9 Kansas City Indianaputis and NewsJersey
al
Colorado i & irone Delaware
Kansas Missouri St. Louis
District of
Kentucky Columbia
Las \éegas
North
Oklahoma Tennessee 3
Albquerque ARt Charlotted Carolina
Arizona Atlgnta South
o Phoenix ississippi Carolina
Dallas Alabama
Tl Tucoson N Georgia
ilin i Jacksonville
(s} Louisiana o
Ao A O
v \/ San Antonio © Houston
Chihuahua \
o
\ Tampag riorida
Gulfof \
California R
Monterrey . >—. M‘gm'
Q Gulfof
Mexico The

Disrupted Connection

\3 S
Seattle ~
" Washingt No
ashington D=k Quebec C"Y/\/ Ney
Montana
& Bruns)
Mini.sota {
Ottawa Montreal
o ” at i
Portland Mlnn%apom Maine
south ™ .
Dakota sgonsin Vermont
Oregon Michigan Toronto
J Idaho 9 =] New
Wyoming Milwaukee o ;e New York Hampshire
Chic o Massachusetts
lowa 2290 :
Nebra: ka Connecticut = ghode Island
Ohio Pennsylvania Neonork
Denver United'S lllinois Indiana 8 Columbilé F’hiladelphiao o
Eeds o ni a 3 ! New=
Utah ynited States Kansas City Indianape!is and NewsJersey
a o
Colorado e Delaware
o . . o
Sacram Kansas MissounlsTlanis Virginia
o A District of
San iforni Kentucky Vige h
Francisco California Columbia
Las Vegas
3 Oklah North
lahoma 5
Albquerque Charlotted Carolina
Bos Angeles Arizona L South
o Phoenix Dellas Carolina
Qg o .
San Diego ""»»\,,\ Tucson Georgia
ustin i Jacksonville
[} Louisiana o
) A O
y \/ San Antonio © Houston
Chihuahua
o
Tampag ioriga
Gulfof 1
California R
Monterrey . S - Mlgml
2 Gulf of
Mexico The

Reconfiguration

\3 A
Seattle ~
" Washingt a5
ashington D=k Quebec C"Y/\/ Ney
Montana
& Bruns!
Mini.sota t
Ottawa Montreal
o i o o
Portland Mlnn%apom Maine
south ™ 3
Dakota wisconsin 0 Vermont
Oregon Michigan OFoRI0
J Idaho 9 =] New
Wyoming Milwaukee o s New York Hampshire
Chic it Massachusetts
lowa oago &
Nebra: ka Connecticut = ghode Island
ohio Pennsylvania Neonork
Indiana B Columb F’hiladelphiao
Eeds ni a . olumbus e
o ted States Kani3as City and NewJersey
a o
Colorado oo Delaware
o . . o
Sacram Kansas MissounlsTlanis Virginia
o . > District of
San <o Kentucky Virgiia :
Francisco California Columbia
Las Vegas
4 Oklah North
lahoma 5
Albquerque Charlotted Carolina
Angel i
Los 893 es Arizona Bota South
o Phoenix Dellas Carolina
Q7 i i
San Diego ""»»\,,\ Tucson Georgia
ustin it Jacksonville
[} Louisiana o
) A O
y \/ San Antonio © Houston
Chihuahua
o
Tampag ioriga
Gulfof 1
California R
Monterrey . >—. M‘gm'
Q Gulf of
Mexico The

Goal-Oriented Requirements Engineering

Maintain
(A)/[DataAvaiIabIe]

(8) Maintain [Operational
Costs < Budget]

Achieve

Achieve [Measure Achieve [Mmlmum
(D)/Network Properties] €/ Num Links Active] (F)/ [Network
Partitions =

) KU | (V) (N) M (°)
Achieve [Cost Ach{eye Achieve Achieve Achle\{e Achieve [Link Achleve
Measured] [Activity [LossRate [[[Workload| | [Capacity Deactivated] [Link
Measured] Measured] /| Measured] | Measured Activated]

Link
Sensor

l[i] RDM
Sensor

Partial KAOS [Dardenne1993,vanLamsweerde2009] goal model of RDM

Goal-Oriented Requirements Engineering

Maintain
(A)/[DataAvaiIabIe]

Non-invariant

(8) Maintain [Operational
Costs < Budget]

Achieve

D) Achieve [Measu.re (E) Achieve [Mmlmum (F) (Network
Network Properties] Num Links Active]
Partitions == 0]

Requirement
) K] L (] (N) M ()

. Achieve Achieve Achieve Achieve Achieve
Achieve [Cost .. i Achieve [Link .
Measured] [Activity [LossRate [[[Workload| | [Capacity Deactivated] [Link
Measured] Measured] /| Measured] | Measured Activated]

sensor Sensor

Utility Functions

Maintain
(A)/[DataAvaiIabIe]

. operational_cost /&
utility ., ,=1.0- P =

Maintain [Operational
budget (B) / Costs < Budget] /

Achieve

Achieve [Measure Achieve [Mmlmum
(D)/Network Properties] €/ Num Links Active] (F)/ [Network
Partitions == 0]

) KU | (v) (N) M (°)
Achieve [Cost Ach{eye Achieve Achieve Achle\{e Achieve [Link Achleve
Measured] [Activity [LossRate [[[Workload| | [Capacity Deactivated] [Link
Measured] J| Measured] [| Measured] | Measured Activated]

Link
Sensor

l[i] RDM
Sensor

Software Testing

Requirements-based testing

= Validate that system under test is satisfying requirements
[Myers2011,IEEE2010]

Regression testing

= Re-validate system following major change to software
[Myers2011,IEEE2010]

Software Testing

= Terminology Test Specification Test Suite 1
= Testcase TC1..TC5
= Single test to assess all or a 1C6
portion of a requirement
TC7
= Test specification TC8
= Set of all possible test cases
derived for a software system Test Suite 2
TC1..TC5
= Test suite TC6
= Subset of test cases from the
test specification TC8
= Typically derived to be TC10

executed under a particular
operating context

Background Approach Case Study Impact Related Work

Software Testing

Test Specification
‘ Test Suite 1 \ S]

TC6
TC7
TC8

Invariant

Test Suite 2
TC6
TC8

TC10

Non-invariant

Background Approach Case Study Impact Related Work

Proteus Approach

Requirements-driven approach for managing run-time testing

Defines an adaptive test plan for each SAS configuration

= Each configuration corresponds to a particular set of
environmental conditions, or operating context

Performs a testing cycle during each timestep
of SAS execution

Adaptive Test Plans

* Network loss rate
* Data mirror capacity
e Sensor fuzz

SAS Config. 1 SAS Config. 2 SAS Config. n

Background Approach Case Study Impact Related Work

Adaptive Test Plans

Comprises all test suites for
given operating context

SAS Config. 1 SAS Config. 2 SAS Config. n

Background Approach Case Study Impact Related Work

laptive Test Plans

Automatically derived by
Proteus

TS1.1 151.2
TS1.3 1S1.4

Definec

SAS Config. 1 SAS Config. 2 SAS Config. n

Background Approach Case Study Impact Related Work

Test Case Activation State

Test cases within test suite have an activation state:
= ACTIVE: Executed when current test suite is performed
= INACTIVE: Not executed when current test suite is performed

= N/A: Not executed, as it is not relevant to current operating
context

Default test suite (TS, ,):

= Relevant to operating context: ACTIVE
= Irrelevant test cases labeled: N/A

Testing Cycle

Testing cycle at each step of SAS execution

1.

ok W

Execute default test suite

Analyze test results <
Perform fine-grained test case parameter adaptation
Perform coarse-grained test suite adaptation

Determine if cycle is complete
If complete: halt testing
If not complete:

1. Execute intermediate test suite

Test Case Fitness

Test case fitness (relevance) is defined as:

l _ 1 O ‘valuemeasured - valueexpected
retevance,. =1.0 — l
vad ueexpected
= For example:

High relevance to environment Low relevance to environment
Test case expected value = 0.50 Test case expected value = 0.50
Test case measured value = 0.45 Test case measured value = 0.01
Fithess = 0.90 Fitness = 0.02

Results Analysis

Each test case is correlated to at least one goal for validation

. Test result validated against utility value

True positive <€
. Test case relevance = [Threshold, 1.0]
. Utility value(s) > 0.0

No action necessary

Error detected in SAS,

True negative <€
. Test case relevance = [0.0, Threshold)
. Utility value(s) = 0.0

perform reconfiguration

Error detected in both SAS

False positive <€
. Test case relevance = [Threshold, 1.0]
. Utility value(s) = 0.0

and test case, adapt both

Error detected in test case,

False negative <€
. Test case relevance [0.0, Threshold)
. Utility value(s) > 0.0

Background Approach Case Study

adapt test case

Impact Related Work

Fine-grained Adaptation

= Veritas [rredericks2014.5eAMS]

= Adapts non-invariant false positive and false negative test cases

= Online evolutionary algorithm

= Searches for a better test case expected value

= Addresses system or environmental uncertainty for each operating
context

Data mirror capacity

>

Background Approach Case Study Impact Related Work

Coarse-grained Adaptation

Dynamically generate test suites based on test results

Invariant

Test Suite 1.0 Test Suite 1.1
True positive
TC1..TC5 TC1..TC5
TC6 True negative TC7
TC7 TC8
TC8 False positive TC9
TC9

False negative

End of Testing Cycle

Testing cycle terminates when:
= New SAS configuration is invoked
New testing cycle initiated

= All test cases result in true positives

If the cycle continues, then the dynamically-generated test suite
is executed instead of the default test suite

Case Study

Simulated RDM network

= [15, 30] data mirrors

= [100,200] data messages
= 300 timesteps

Uncertainty at each timestep:

= Unpredictable network link failures

= Randomly dropped or delayed messages

= Noise applied to data mirror sensors / network links

Case Study

Test specification:
= 36 test cases

7 invariant [precluded from adaptation]

29 non-invariant [can be adapted]

Compared Proteus adaptive test plans to a manually-derived
Control test plan

= Control test suite:

All test cases from test specification relevant to each operating
context

Proteus and Veritas

Executed false positive test cases, i.e., Executed false negative test cases, i.e.,
test case relevance = [Threshold, 1.0], test case relevance = [0.0, Threshold),
utility value = 0.0 utility value > 0.0

301

20- 201

10- 10-

Cumulative Number of False Positives
Cumulative Number of False Negatives

1 1 1 T
Control Proteus Control Proteus

Experimental Results

Executed irrelevant test cases, i.e.,

Total number of executed test cases
test case relevance = 0.0

: 10000+

8000 -

6000 -

4000 -

Cumulative Number of Irrelevant Test Cases
N
Cumulative Number of Executed Test Cases

07 2000~

Corlmtrol Pro{eus Control Proteus

Case Study Discussion

Adaptive testing provided by Proteus framework supported by
Veritas

Test suites and test cases remain relevant to changing
environmental conditions

Reduces number of irrelevant test cases executed at run time

Impact of Run-Time Testing

Analyzed impact of our framework:
= Execution time

= Memory overhead
= Requirements satisficement

= Number of reconfigurations

Impact Study

Tested three states:
= (S1): All run-time testing activities enabled

Proteus+Veritas enabled

= (S2): All run-time testing activities disabled
Proteus+Veritas disabled

= (S3): Run-time testing framework removed

Proteus+Veritas code / data structures removed from
implementation

= Execution time
= Measured total execution time of RDM simulation

Average execution time (seconds) 23.030 13.901 13.785

Background Approach Case Study Impact Related Work

= Execution time
= Measured total execution time of RDM simulation

Average execution time (seconds) 23.030 13.901 13.785

Significant (p < 0.05)

Background Approach Case Study Impact Related Work

= Memory footprint

= Measured maximum memory usage of RDM simulation

Average memory usage (megabytes) 65.234 65.332 65.020

Background Approach Case Study Impact Related Work

Not significant (p > 0.05)

Memory footprint

= Measured maximum memory us imulation

Average memory usage (megabytes)

Background Approach Case Study Impact Related Work

= Requirements satisficement
= Calculated average utility value over simulation

Average utility value 0.7717 0.7656 0.7656

Background Approach Case Study Impact Related Work

= Requirements satisficement
= Calculated average utility value over simulation

Average utility value 0.7717 0.7656 0.7656

Not significant (p > 0.05)

Background Approach Case Study Impact Related Work

= Number of reconfigurations

= Averaged number of triggered RDM reconfigurations

Average number of reconfigurations 23.00 17.28 19.16

Background Approach Case Study Impact Related Work

Not significant (p > 0.05)

Number of reconfigurations

= Averaged number of triggered R

Average number of reconfigurations

Discussion of Testing Impact

Run-time, adaptive testing only significantly impacts RDM in
terms of execution time

= Exploring parallelization strategies to reduce time impact

While not significant, a clear difference in mean utility values
exist in requirements satisficement

= Timing of measurement causes sampling times to be slightly
different

Related Work

Search-based software testing

. Techniques such as evolutionary computation, hill climbing, simulated annealing used
for different testing approaches in model testing [Harman2009], regression testing
[Harman2012], and structural testing [McMinn2011]

. EvoSuite [Fraser2011] and Nighthawk [Andrews2011] are evolutionary frameworks
for generating test suites and instantiating unit tests

. Veritas uses a run-time evolutionary algorithm, whereas the other techniques focus
on design time search

Run-time testing

- Implemented using reinforcement learning [Veanes2006], recording & replaying
[Tsai1990], and Markov modeling [Filieri2011] approaches

. Veritas combines evolutionary search for test parameters with utility-based validation
. Proteus maintains relevance of test suites as conditions change

Related Work

Test suite generation
. Requirements specification used to generate formal grammars [Bauer1979]

Proteus generates new test suites based upon a pre-defined default test suite and
executes based on monitored conditions

. Artificial intelligence used to automatically generate test plans for graphical user
interfaces [Memon2001]

Proteus analyzes monitoring information to select appropriate test suite

Test case selection and prioritization
. Select a representative set of test cases and prioritize their execution [Harman2009]
Proteus selects and executes tests at run time

. Tropos [Nguyen2008] uses agent-based randomized testing to validate multi-agent
systems

Proteus generates test suites targeted towards specific DAS operating contexts

Acknowledgements

NSF BEACON Center (www.beacon-center.org)

NSF grants CCF-0820220, DBI-0939454, CNS-0854931, CNS-1305358
Ford Motor Company

General Motors

References

[Veitch2003] M. Ji, A. Veitch, and J. Wilkes, “Seneca: Remote mirroring done write,” in USENIX 2003 Annual Technical
Conference. Berkeley, CA, USA: USENIX Association, June 2003, pp. 253-268.

[Keeton2004] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes, “Designing for disasters,” in Proc. of the 3rd USENIX
Conference on File and Storage Technologies. Berkeley, CA, USA: USENIX Association, 2004, pp. 59-62.

[Dardennel1993] A. Dardenne, A. Van Lamsweerde, and S. Fickas, “Goal-directed re- quirements acquisition,” Science of
computer programming, vol. 20, no. 1, pp. 3-50, 1993.

[vanLamsweerde2009] A. van Lamsweerde, Requirements Engineering: From System Goals to UML Models to Software
Specifications. Wiley, 2009.

[deGrandis2009] P. deGrandis and G. Valetto, “Elicitation and utilization of application- level utility functions,” in Proc. of
the 6th International Conference on Autonomic Computing, ser. ICAC’09. ACM, 2009, pp. 107-116.

[Ramirez2011] A. J. Ramirez and B. H. C. Cheng, “Automatically deriving utility functions for monitoring software
requirements,” in Proc. of the 2011 International Conference on Model Driven Engineering Languages and Systems
Conference, Wellington, New Zealand, 2011, pp. 501-516.

[Walsh2004] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility functions in autonomic systems,” in Proc. of the
First IEEE International Conference on Autonomic Computing. IEEE Computer Society, 2004, pp. 70-77.

[Myers2011] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing. John Wiley & Sons, 2011.
[IEEE2010] IEEE, “Systems and software engineering — vocabulary,” ISO/IEC/IEEE 24765:2010(E), pp. 1-418, Dec 2010.

References

[Fredericks2014.SEAMS] E. M. Fredericks, B. DeVries, and B. H. C. Cheng, “Towards run- time adaptation of test cases for
self-adaptive systems in the face of uncertainty,” in Proceedings of the 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, ser. SEAMS ’14, 2014.

[Harman2009] M. Harman, S. A. Mansouri, and Y. Zhang, “Search based software engineering: A comprehensive analysis
and review of trends techniques and applications,” Department of Computer Science, King’s College London, Tech. Rep.
TR-09-03, 20009.

[Fraser2011] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-oriented software. In
Proc. of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engineering,
ES- EC/FSE 11, pages 416-419, Szeged, Hungary, 2011. ACM.

[Andrews2011] James H. Andrews, Tim Menzies, and Felix C.H. Li. Genetic algorithms for randomized unit testing. IEEE
Trans. on Software Engineering, 37(1):80-94, January 2011.

[Veanes2006] Margus Veanes, Pritam Roy, and Colin Campbell. Online testing with rein- forcement learning. In Formal
Approaches to Software Testing and Runtime Verification, pages 240-253. Springer, 2006.

[Tsai1l990] J.J.-P. Tsai, K.-Y. Fang, Horng-Yuan Chen, and Yao-Dong Bi. A noninter- ference monitoring and replay
mechanism for real-time software testing and debugging. Software Engineering, IEEE Transactions on, 16(8):897-916,
1990.

[Filieri2011] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. Run-time efficient probabilistic model checking. In
Proc. of the 33rd International Conference on Software Engineering, pages 341-350, Waikiki, Honolulu, Hawaii, USA,
2011. ACM.

