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Motivation

= Run-time testing provides assurance for self-adaptive systems
(SAS)

= An SAS can experience uncertainty, possibly rendering test cases
created at design time irrelevant

= Proteus ensures that test suites and
test cases remain relevant throughout
SAS execution
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Goal-oriented requirements engineering

Software testing



Remote Data Mirroring Application

RDM [veitch2003 keeton2004] Provides:

= Data protection

= Prevents data loss and maintains availability
= Stores data in physically remote locations

= Represented as an SAS




Remote Data Mirroring Application
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Disrupted Connection
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Reconfiguration
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Goal-Oriented Requirements Engineering

Maintain
(A)/[DataAvaiIabIe]

(8) Maintain [Operational
Costs < Budget]

Achieve

Achieve [Measure Achieve [Mmlmum
(D)/Network Properties] €/ Num Links Active] (F)/ [Network
Partitions =

) KU | (V) (N) M (°)
Achieve [Cost Ach{eye Achieve Achieve Achle\{e Achieve [Link Achleve
Measured] [Activity [LossRate [[[Workload| | [Capacity Deactivated] [Link
Measured] Measured] /| Measured] | Measured Activated]

Link
Sensor

l[i] RDM
Sensor

Partial KAOS [Dardenne1993,vanLamsweerde2009] goal model of RDM



Goal-Oriented Requirements Engineering

Maintain
(A)/[DataAvaiIabIe]

Non-invariant

(8) Maintain [Operational
Costs < Budget]

Achieve

D) Achieve [Measu.re (E) Achieve [Mmlmum (F) (Network
Network Properties] Num Links Active]
Partitions == 0]

Requirement
) K] L (] (N) M ()

. Achieve Achieve Achieve Achieve Achieve
Achieve [Cost .. i Achieve [Link .
Measured] [Activity [LossRate [[[Workload| | [Capacity Deactivated] [Link
Measured] Measured] /| Measured] | Measured Activated]

sensor Sensor




Utility Functions

Maintain
(A)/[DataAvaiIabIe]

. operational_cost /&
utility ., ,=1.0- P =

Maintain [Operational
budget (B) / Costs < Budget] /

Achieve

Achieve [Measure Achieve [Mmlmum
(D)/Network Properties] €/ Num Links Active] (F)/ [Network
Partitions == 0]

) KU | (v) (N) M (°)
Achieve [Cost Ach{eye Achieve Achieve Achle\{e Achieve [Link Achleve
Measured] [Activity [LossRate [[[Workload| | [Capacity Deactivated] [Link
Measured] J| Measured] [| Measured] | Measured Activated]

Link
Sensor

l[i] RDM
Sensor




Software Testing

Requirements-based testing

= Validate that system under test is satisfying requirements
[Myers2011,IEEE2010]

Regression testing

= Re-validate system following major change to software
[Myers2011,IEEE2010]



Software Testing

= Terminology Test Specification Test Suite 1
= Testcase TC1..TC5
= Single test to assess all or a 1C6
portion of a requirement
TC7
= Test specification TC8
= Set of all possible test cases
derived for a software system Test Suite 2
TC1..TC5
=  Test suite TC6
= Subset of test cases from the
test specification TC8
= Typically derived to be TC10

executed under a particular
operating context

Background Approach Case Study Impact Related Work



Software Testing

Test Specification
‘ Test Suite 1 \ S ]

TC6
TC7
TC8

Invariant

Test Suite 2
TC6
TC8

TC10

Non-invariant

Background Approach Case Study Impact Related Work



Proteus Approach

Requirements-driven approach for managing run-time testing

Defines an adaptive test plan for each SAS configuration

= Each configuration corresponds to a particular set of
environmental conditions, or operating context

Performs a testing cycle during each timestep
of SAS execution




Adaptive Test Plans

* Network loss rate
* Data mirror capacity
e Sensor fuzz

SAS Config. 1 SAS Config. 2 SAS Config. n

Background Approach Case Study Impact Related Work



Adaptive Test Plans

Comprises all test suites for
given operating context

SAS Config. 1 SAS Config. 2 SAS Config. n

Background Approach Case Study Impact Related Work



laptive Test Plans

Automatically derived by
Proteus

TS1.1 151.2
TS1.3 1S1.4

Definec

SAS Config. 1 SAS Config. 2 SAS Config. n

Background Approach Case Study Impact Related Work



Test Case Activation State

Test cases within test suite have an activation state:
= ACTIVE: Executed when current test suite is performed
= INACTIVE: Not executed when current test suite is performed

=  N/A: Not executed, as it is not relevant to current operating
context

Default test suite (TS, ,):

= Relevant to operating context: ACTIVE
= Irrelevant test cases labeled: N/A



Testing Cycle

Testing cycle at each step of SAS execution

1.

ok W

Execute default test suite

Analyze test results <
Perform fine-grained test case parameter adaptation
Perform coarse-grained test suite adaptation

Determine if cycle is complete
If complete: halt testing
If not complete:

1. Execute intermediate test suite




Test Case Fitness

Test case fitness (relevance) is defined as:

l _ 1 O ‘valuemeasured - valueexpected
retevance,. =1.0 — l
vad ueexpected
=  For example:

High relevance to environment Low relevance to environment
Test case expected value = 0.50 Test case expected value = 0.50
Test case measured value = 0.45 Test case measured value = 0.01
Fithess = 0.90 Fitness = 0.02




Results Analysis

Each test case is correlated to at least one goal for validation

. Test result validated against utility value

True positive <€
. Test case relevance = [Threshold, 1.0]
. Utility value(s) > 0.0

No action necessary

Error detected in SAS,

True negative <€
. Test case relevance = [0.0, Threshold)
. Utility value(s) = 0.0

perform reconfiguration

Error detected in both SAS

False positive <€
. Test case relevance = [Threshold, 1.0]
. Utility value(s) = 0.0

and test case, adapt both

Error detected in test case,

False negative <€
. Test case relevance [0.0, Threshold)
. Utility value(s) > 0.0

Background Approach Case Study

adapt test case

Impact Related Work



Fine-grained Adaptation

= Veritas [rredericks2014.5eAMS]

= Adapts non-invariant false positive and false negative test cases

=  Online evolutionary algorithm

= Searches for a better test case expected value

= Addresses system or environmental uncertainty for each operating
context

Data mirror capacity

>

Background Approach Case Study Impact Related Work



Coarse-grained Adaptation

Dynamically generate test suites based on test results

Invariant

Test Suite 1.0 Test Suite 1.1
True positive
TC1..TC5 TC1..TC5
TC6 True negative TC7
TC7 TC8
TC8 False positive TC9
TC9

False negative




End of Testing Cycle

Testing cycle terminates when:
= New SAS configuration is invoked
New testing cycle initiated

= All test cases result in true positives

If the cycle continues, then the dynamically-generated test suite
is executed instead of the default test suite



Case Study

Simulated RDM network

= [15, 30] data mirrors

= [100,200] data messages
= 300 timesteps

Uncertainty at each timestep:

=  Unpredictable network link failures

= Randomly dropped or delayed messages

= Noise applied to data mirror sensors / network links



Case Study

Test specification:
= 36 test cases

7 invariant [precluded from adaptation]

29 non-invariant [can be adapted]

Compared Proteus adaptive test plans to a manually-derived
Control test plan

= Control test suite:

All test cases from test specification relevant to each operating
context



Proteus and Veritas

Executed false positive test cases, i.e., Executed false negative test cases, i.e.,
test case relevance = [Threshold, 1.0], test case relevance = [0.0, Threshold),
utility value = 0.0 utility value > 0.0

301

20- 201

10- 10-

Cumulative Number of False Positives
Cumulative Number of False Negatives

1 1 1 T
Control Proteus Control Proteus



Experimental Results

Executed irrelevant test cases, i.e.,

Total number of executed test cases
test case relevance = 0.0

: 10000+

8000 -

6000 -

4000 -

Cumulative Number of Irrelevant Test Cases
N
Cumulative Number of Executed Test Cases

07 2000~

Corlmtrol Pro{eus Control Proteus




Case Study Discussion

Adaptive testing provided by Proteus framework supported by
Veritas

Test suites and test cases remain relevant to changing
environmental conditions

Reduces number of irrelevant test cases executed at run time



Impact of Run-Time Testing

Analyzed impact of our framework:
= Execution time

= Memory overhead
= Requirements satisficement

=  Number of reconfigurations



Impact Study

Tested three states:
= (S1): All run-time testing activities enabled

Proteus+Veritas enabled

= (S2): All run-time testing activities disabled
Proteus+Veritas disabled

= (S3): Run-time testing framework removed

Proteus+Veritas code / data structures removed from
implementation



= Execution time
= Measured total execution time of RDM simulation

Average execution time (seconds) 23.030 13.901 13.785

Background Approach Case Study Impact Related Work



= Execution time
= Measured total execution time of RDM simulation

Average execution time (seconds) 23.030 13.901 13.785

Significant (p < 0.05)

Background Approach Case Study Impact Related Work



= Memory footprint

=  Measured maximum memory usage of RDM simulation

Average memory usage (megabytes) 65.234 65.332 65.020

Background Approach Case Study Impact Related Work



Not significant (p > 0.05)

Memory footprint

=  Measured maximum memory us imulation

Average memory usage (megabytes)

Background Approach Case Study Impact Related Work



= Requirements satisficement
= Calculated average utility value over simulation

Average utility value 0.7717 0.7656 0.7656

Background Approach Case Study Impact Related Work



= Requirements satisficement
= Calculated average utility value over simulation

Average utility value 0.7717 0.7656 0.7656

Not significant (p > 0.05)

Background Approach Case Study Impact Related Work



= Number of reconfigurations

= Averaged number of triggered RDM reconfigurations

Average number of reconfigurations 23.00 17.28 19.16

Background Approach Case Study Impact Related Work



Not significant (p > 0.05)

Number of reconfigurations

=  Averaged number of triggered R

Average number of reconfigurations




Discussion of Testing Impact

Run-time, adaptive testing only significantly impacts RDM in
terms of execution time

= Exploring parallelization strategies to reduce time impact

While not significant, a clear difference in mean utility values
exist in requirements satisficement

= Timing of measurement causes sampling times to be slightly
different



Related Work

Search-based software testing

. Techniques such as evolutionary computation, hill climbing, simulated annealing used
for different testing approaches in model testing [Harman2009], regression testing
[Harman2012], and structural testing [McMinn2011]

. EvoSuite [Fraser2011] and Nighthawk [Andrews2011] are evolutionary frameworks
for generating test suites and instantiating unit tests

. Veritas uses a run-time evolutionary algorithm, whereas the other techniques focus
on design time search

Run-time testing

- Implemented using reinforcement learning [Veanes2006], recording & replaying
[Tsai1990], and Markov modeling [Filieri2011] approaches

. Veritas combines evolutionary search for test parameters with utility-based validation
. Proteus maintains relevance of test suites as conditions change



Related Work

Test suite generation
. Requirements specification used to generate formal grammars [Bauer1979]

Proteus generates new test suites based upon a pre-defined default test suite and
executes based on monitored conditions

. Artificial intelligence used to automatically generate test plans for graphical user
interfaces [Memon2001]

Proteus analyzes monitoring information to select appropriate test suite

Test case selection and prioritization
. Select a representative set of test cases and prioritize their execution [Harman2009]
Proteus selects and executes tests at run time

. Tropos [Nguyen2008] uses agent-based randomized testing to validate multi-agent
systems

Proteus generates test suites targeted towards specific DAS operating contexts
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