
AC-CONTRACT: RUN-TIME VERIFICATION
OF CONTEXT-AWARE APPLICATIONS

Marina Mongiello1,Patrizio Pelliccione2, Massimo Sciancalepore1

1 Dipartimento di Ingegneria Elettrica e dell’Informazione – Politecnico di Bari, Italy
2 Department of Computer Science and Engineering - Chalmers University of Technology and
University of Gothenburg, Sweden

Outline of the talk

• Schema and frame: cognitive psicology

• AdaptableCode-contract: AC-contract

• Instantiation of AC-contract

• Derivation of operational requirements

• Reflection and contract checking

• Android implementation: Traveller

• Conclusion and future work

AC-contract: formal definition

Tuple
• Schema
• Frame
• Adaptable Pattern
• Contract checking

Meta level

Base level

Adaptation
manager

AC-contract tuple

Embeds logical
propositions in the
source code
Executes the annotation
for run-time verification

Drive adaptation

Schema

• Models the structure of

information

• Tacit knowledge to use

to interpret ambiguous

situations

• Models properties to

maintain despite

adaptation

Metaobjects
Invariant

Properties

Contract

checker

SCHEMA

CheckUse

Regulate

Core Part

Adaptable

part

Frame

• The set of core and

adaptable components

• Contains the pre and

post conditions of the

contract

Contract

checker
Check

Adaptable

pattern

Core Part

Adaptable

part FRAME

Pre-conditions

Post-conditions

Adaptation manager

Drive
Adaptation

Adaptation manager

• Embeds the contract

checker managing

metaobjects at runtime

• Contains the adaptable

mechanism to manage

metaobjects

Contract

checker
Check

Adaptable

pattern

Core Part

Adaptable

part FRAME

Pre-conditions

Post-conditions

Adaptation manager

Drive
Adaptation

Instantiated

approach

Instantiation of

AC-contract

based on user’s

requeriments

specification

Requirements

High-level requirements

• Expressed according to

structured english grammar in

term of specification patterns

Operational requirements

• Formalized exploiting the

structure of specification

patterns

Derivation of operational requirements

• e={Events/states}: Local properties

• SP: Specification patterns
• Absence(P)

• Universality(P)

• BoundedExistence(P,n)

• Response(P,S)

• Precedence(P,S)

• ResponseChain1N(P,S,T1,..TN)

• ResponseChainN1(S,T1,..TN,P)

• PrecedenceChain1N (S, T1,..TN,P)

• PrecedenceChainN1 (P,S,T1,..TN)

• SC: Scope
• Globally

• Before(R)

• After(Q)

• Between(Q,R)

• After(Q,R)

Requirement specification

• reqspec= (instsc(sc,locprop) , instsp(sp,locprop))

• instsc(sc,locprop)

• maps a scope into a list of local properties

• instantiate the scope according to state/events in locprop

• instsp(sp,locprop)

• maps a pattern into a list of local properties

• instantiates the pattern according to states/events in locprop

Requirement specification: an example

High-level requirement

’’The system creates an

album with the name of

signalled points of

interest only when the

multimedia files have

been already stored’’

Operational requirement

•e={e1,e2}
• e1= ‘’the system creates an

album with the name of

signalled points of interest’’

• e2= ‘’the multimedia files

have been already stored’’

• SC: Globally

• SP: Precedence (P,S)

Structured english grammar for req

• Globally, if ’the system creates an album with the name

of signalled points of interest’’ then it must have been

the case that ’’the multimedia files have been already

stored before ‘’the system creates an album with the

name of signalled points of interest ‘’

XML file
XML file

Reflection Module

Main features

• Implements Reflection

pattern

• Deploys and executes

adaptable components

• Uses metainformation

about the extensions

Control flow of reflection module

Read XML

Reflection

client

Reflection

server

Runtime

component

call

XML file

<name></name>

<path></path>

<condition></condition>

File1.xml

File2.xml.

File3.xml

…..

frame1 frame2 framen

Contract checking module

• Checks the contract

triple

• Core components of

the schema embed the

invariant of the

contract

• Each component

encodes

pre/postcondition pair

XML based

Contract

Checker

Reflection

Pattern

SchemaInvariant

Adaptable

apps

Core apps

Precondition

Frame1

Postcondition

Precondition

Frame2

Postcondition
……..

Precondition

Framen

Postcondition

Precondition

Framen+1

Postcondition

……..

Mobile Adaptable architecture

• Traveller: Android application for traveller assistance

• Architectural issues:

• Native/hybrid mobile architecture

• Dynamic deployment

• Executable code downloaded and executed on the device

• Innovative issues:

• Implementation of contract verification on Android platform

• Use of android Intents to manage events pre and post conditions.

Traveller

AC-contract

• Schema

• Frames

• Contract checking

• Adaptable Pattern

Android instantiation

• Android container

• Apk files implementing

Activities

• XMLparser

• Reflection pattern

Derivation of operational requirements

• Globally, if ‘’the system
creates an album with
the name of signalled
points of interest’’ then
it must have been the
case that ’’the
multimedia files have
been already stored
before ‘’the system
creates an album with
the name of signalled
points of interest ‘’

• precondition
• P= ‘’the system creates an

album with the name of
signalled points of
interest’’

• postcondition
• S= ’the multimedia files

have been already stored’’

Precondition P

• P is managed using Android Intent: image capture

• Precondition P is split in:
• The user wants to take a photo

• The photo is taken

• The user accepts the photo

• Low level precondition encoding :

• Event Photo ← onClick()

• setAction (i←Intent(Action_Image_capture))

• startActivity(i,Capture_active_request_code)

Precondition check

• User activates the app

• If some event occurs that satisfies a requirement

• Precondition is checked to find an app satisfying the requirement

• The app is downloaded and executed by Reflection on the device

Postcondition S

• Is encoded in the deployed app and checked after app

execution

• Low level postcondition encoding:

• the number of stored multimedia files on the device has increased

• Implemented using a user defined function to count the multimedia

files stored on the device’s memory

Postcondition check

• S is checked after the app execution:

• The album with multimedia data has been created

• S is verified if creation of album has been performed

AC-contract reasoning algorithm

App activation and execution

• Life-cycle of android app:

run from Activity

• Intent activates Events:

• A component requires the

execution of an Action by

another component

Algorithm AC-Contract

• begin

• Intent Definition

• Event Photo

• setAction(Intent)

• StartActivity(Capture_image)

• If result

• If XML ContractChecking Then

• DownloadAPK

• ReflectionCall

• CreateAlbum

• CheckPostCondition

• End

Contract checking

XML file descriptor managing

• Contract checking is

managed through an XML

file descriptor:

• Each app that can be

invoked by the main

container has a XML file

descriptor

• A FTP server stores the XML

file descriptors

Contract checking algorithm

Begin

XMLParser

While nextFile XML do

getXML fromURL

For i=1..nodelistlength

Getitem

Precondition← getvalue

If CheckPrecondition then

getnameclassTag

getpathnameTag

Download

end

Reflection Module

• Reflection enable the
call of methods
belonging to different
Android classes

• Container connects to
the address of the app

• Address is returned
from the XML parser

• App is deployed to
device container and
executed on the device

Conclusion

• We propose AC-contract:

• A run-time verification approach for modeling and verifying run-time

requirements of adaptable software systems

• Based on:

• Design-by-contract

• Reflection pattern

• Models operational requirements using

• Specification patterns

• Local properties

• Starting from high-level requirements identifies properties

that locally hold on single parts of the system

• Methodology is validated on a mobile application

Future work

• We are currently working to extend the approach on the

theoretical basis and on experimental application:

• Extend the approach for compositional and incremental verification

• Instantiate the approach in implementative platform:

• Sensor networks

• Internet of things

