Modeling and Analyzing MAPE-K
Feedback Loops for Self-adaptation

Paolo Arcaini

Dept. of Distributed and Dependable Systems, Charles University in
Prague, Czech Republic -- arcaini@d3s.mff.cuni.cz

Elvinia Riccobene

Dept. of Computer Science - University of Milan, ltaly --
elvinia.riccobene@unimi.it

Patrizia Scandurra

Dept. of Managment, Information and Production Engineering,

University of Bergamo, ltaly -- patrizia.scandurra@unibg.it

Problem statement

Self-Adaptation (SA) is a promising approach to deal with the
complexity, uncertainty and dynamicity of modern software systems

The MAPE-K (Monitor-Analyze-Plan-Execute over a shared Knowledge)
feedback loop is a well-known control model for autonomic and self-
adaptive systems

Formal methods for specifying and reasoning about self-adaptive
systems’ behavior are highly demanded

o A study (reference [34] in the paper) shows the number of works that
employ formal methods in self-adaptive systems are low

Our proposal:

> A formal framework for modeling, validating, and verifying self-
adaptive systems with multiple interactive MAPE-K loops

° based on the formal method Abstract State Machines and model-
checking techniques

P. Scandurra — SEAMS 2015 May 18-19, 2015, Firenze, Italy

Outline

v

Decentralized MAPE-K control loops: reference model for
Self-Adaptation

» Background on Abstract State Machines (ASM)

Self-adaptive ASMs: enhanced ASM constructs and
patterns to model self-adaptive behavior

v

» Tool-supported formal analysis techniques

» Conclusions and future work

P. Scandurra — SEAMS 2015 May 18-19, 2015, Firenze, Italy

Reference model for Self-Adaptation

Self-Adaptive Software System

—» Managing Subsystem

sensor Tsensordata 4 ;adapt

data

Managed Subsystem

—g

Adaptation logic

LA [P
IEI

fsensor data @ affect

Environment
Non-controllable software, hardware,
network, physical context

Decentralized MAPE-K
control loop model

» MAPE-K (Monitor-Analyse-Plan-Execute components over a shared Knowledge) : well
known architectural solution to realize the control loop of a self-adaptive system
J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE Computer, 36(1):41-50, 2003

» Separation of concerns: a set of interacting MAPE loops, one per each adaptation concern

» Decentralization: MAPE computations may be decentralized throughout multiple MAPE loops

> They need to be coordinated to avoid conflicts!
P. Scandurra — SEAMS 2015 May 18-19, 2015, Firenze, Italy

Running case study: Traffic Monitoring application
(inspired by *)

Intelligent cameras collaborate in master /slaves organizations to monitor and aggregate
useful data whenever the traffic jam enters/leaves their viewing range

-C1 ----------- ,9.2 ____________ -'C3 C4
T § F ﬁm E %
ELEXIBILITY oot~ o ./ ogas
adaptation
£ -
concern T Legend F amera
L \ﬁFailure
@Ry Car
") Organization
' Viewing
ROBUSTNESS o

M Master Role

adaptation
concern

* M. U. Iftikhar and D. Weyns. A case study on formal verification of self-adaptive
behaviors in a decentralized system. In FOCLASA 2012, Newcastle, U. K.

Running case study: camera system architecture

Managed
subsystem

Local Camera System o | Node
—_ Provided interface
<o Ml — Required interface

Monitoring System
. Component
Camera Monitor Port
Repair

.~:|-;- | Self-healing 4 — - Delegates
~ | controller
'Organization robustness
controller concern
Managing
0 subsystem

|
i Tq\\ Infrastructure Services

‘ Distributed Communication & Host Infrastructure

P. Scandurra — SEAMS 2015 May 18-19, 2015, Firenze, Italy

Abstract State Machines (ASMs)

» ASMs are an extension of FSMs

o states: multi-sorted first-order structures, i.e. domains of objects
with functions defined on them

° transitions: named transition rules describing how functions
change from one state to the next

» Basic transition rule: if Condition then Updates
where Updates is a set of function updates f(t1, ..., in):= 1t
simultaneously executed when Condition is true

» More complex rule constructors exist:

* parallel (par) and sequential actions (seq)
* non-determinism (choose)

* unrestricted synch. parallelism (forall)

* efc

P. Scandurra — SEAMS 2015 May 18-19, 2015, Firenze, Italy

Multi-agent ASM (or distributed ASM)

Each agent a € AGENT

» has a “local” view
View(a, S) of the global

state S ag4 @

» executes its own
program prog(a)
(i.e., an ASM rule) View(ag4,S)
to determine the next
global state

e

S

>
C

program(ag4)

P1

P2

P3

Programs

Global State S

P. Scandurra — SEAMS 2015 May 18-19, 2015, Firenze, ltaly

ASM model topology of the mdnaging layer

program program program program
ASM rules
@E
@m R AN
11 21
@A Ry, @ R,
R] P R2q Rir Rns
P

MAP E(ad|) MAP Efad) MA P E(adi) M AP E(ad,)
' ‘ Cadi; 3 ..o ad|n

LLLLL

k

ASM domains and functions symbols 9

Self-adaptive ASM

A multi-agent ASM:

» managed agents MdA € Agent encapsulate the system’s functional logic

» managing agents MgA < Agent encapsulate the adaptation logic of MAPE-K
loops
» A common knowledge K — [_jmEj K (adj)is shared by all managing agents

» The notion of environment is represented by ASM monitored functions

» A MAPE loop for an adaptation concern «dj;:

N a1 -
MAPE(adji) = {Ryia pE gy BMAPE (aai,))
° {ay...,a,} € MgA are the managing agents involved in the loop

o R% : . Y |
RMAPE(adji) is the behavioral contribution of @ to the loop

» The program of a managing agent a; is the parallel execution of all its
behavioral contributions to the loops ji,.... j; it is invoved to:

program(a;) = parRMAPE(adjjl), . RMAPE(adjjk)endpar

P. Scandurra — SEAMS 2015 May 18-19, 2015, Firenze, Italy

10

ASM model topology of the Traffic monitoring case study

CqmerQ] Cqmerd2 LouIC=maraSy_sum
@ @ @ XX ;) f;l:;::lael:"ng
Organization
controller
program program program program

v
;'7‘

" Infrastructure Services

\ / Distributed Communication & Host Infrastructure

r_failureDetect |

trFlexBehavi
r_OrgContrFlexBehavior - failureAdapt

MAPE(flexibility) MAPE (extFailure)
flexibility extFailure

N

Traffic monitoring case study

Program of each organization controller

macro rule r_organizationController =
par
orgContrFlexBehavior(self) //Adaptation due to congestion
r_failureAdapt[] /Adaptation due to external failure
r_selfFailureAdapt[] /Adaptation due to internal failure
endpar

agent OrganizationController : r_organizationController(]

Excerpt of rule with MAPE computations

mac:a’r’”'e r_selfFailureAdapt = Centralized self-aware monitoring
if stopCam(camera(self)) then /@M_s - - AN/
if state(camera(self)) 1= FAILED then /@4 Lif_Cond then Analyze //GM_cls|
state(camera(self)) .= FAILED /@E
endif
ndif ASM rule schemes or patterns
it startCam(camera(self)) then /@M _s h | ti £
if state(camera(self)) = FAILED then /@A capture the general semantics o
par /@E MAPE computations
state(camera(self)) .= MASTER
endpar
endif
endif
endpar

P. Scandurra — SEAMS 2015 May 18-19, 2015, Firenze, ltaly

12

Formal analysis techniques
Supported by the toolset ASMETA (ASM mETAmodeling)

» Model validation
> provide early feedback, less demanding than property
verification
> Techniques
Simulation (interactive simulation, random simulation)

Scenario-based validation

» Model verification
° based on the model checking technique

Model review: verification of meta-properties (system-independent
properties) defined as CTL formulae

Verification of invariants and adaptation goals expressed in
CTL/LTL formulas

P. Scandurra — SEAMS 2015 May 18-19, 2015, Firenze, Italy

13

4

Scenario-based validation

o ege . scenario Flexibility_T0_T1
Definition of key scenarios i palel s ¥

speufylng the expeded behavior set stopCam(c1) = false; set stopCam(c2) := false; set stopCam(c3) = false;

of the model set stopCam(c4) = false; set startCam(c1) := false; set startCam(c2) := false;

set startCam(c3) := false; set startCam(c4) := false; set congestion(c1) := false;
Scenarios are written in the set congestion(c2) := false; set congestion(c3) := true; set congestion(c4) := true;

set elapsedWaitTime(shc3) = false; set elapsedWaitTimePlusDelta(shc4) = false;
language Avalla and exec par

. state(c3) .= MASTERWITHSLAVES
executed through the validator state(c4) = SLAVE
slaves(c3, c4) = true

congested(oc3) = true
congested(oc4) = true
endpar;
step

Example

»

Flexibility scenario from

. set congestion(c2) = true;
TO to T1in Avalla step s
check getMaster(c4)=c3 and s_offer(c3)=true and s_offer(c4)=false and
slaves(c3,c4)=true and state(c1)=MASTER and state(c2) = MASTER and
state(c3) = MASTERWITHSLAVES and state(c4)=SLAVE;

step

check isAlive(c4)=false and newSlave(c2,c3)=true and getMaster(c4)=c3 and
s_offer(c3)=true and s_offer(c4)=false and slaves(c3,c4)=false and
state(c1)=MASTER and state(c2) = MASTER and state(c3) = SLAVE and
state(c4)=SLAVE;

step

check isAlive(c4) = false and newSlave(c2,c3) = false and getMaster(c4) = ¢3 and
s_offer(c3) = true and s_offer(c4) = false and slaves(c2,c3) = true and
slaves(c2,c4) = true and state(c1) = MASTER and
state(c2) = MASTERWITHSLAVES and state(c3) = SLAVE and
state(c4) = SLAVE;

Model verification

through the ASMETA /AsmetaSMYV that translates ASM into models
of the model checker NuSMV

» Invariant verification:

I1: ag(not(forall $c in Camera with state($c) = SLAVE))
I12: ag(not(forall $c in Camera with state($c) = MASTERWITHSLAVES))

» Adaptation goals:

Flexibility F1:ag((state(c;) = MASTER and congested(oc;) and
state(c;11) = MASTER and congested(oc; 1)) implies
af(state(c;) = MASTERWITHSLAVES and slaves(c;, ¢;11)))

Robustness R1: ag((stateC(c;) = FAILED and slaves(c;, ¢c;+1)) implies
ef(not(slaves(c;, Ci+1))))

P. Scandurra — SEAMS 2015 May 18-19, 2015, Firenze, ltaly

15

Model review

» through the AsmetaMA tool (based on AsmetaSMYV)

» a meta-property violation may indicate the presence of
a real fault or only of a stylistic defect

» Meta-properties categories for SA:

> MPnc: MAPE loops are not in conflict. discover unwanted
interferences between MAPE-K loops in terms of inconsistent
ASM function updates

> MPe : all rules involved in MAPE loops are executed, i.e., there is
no over specification inside a MAPE loop

> MPm: the knowledge is minimal, i.e., it does not contain locations
that are unnecessary

P. Scandurra — SEAMS 2015 May 18-19, 2015, Firenze, Italy

16

Faced challenges

» Formal modeling self-adaptive behavior through a clear
separation of concerns in a decentralized view
> By distinguishing ASM managing agents from managed ones
> By identifying different adaptation concerns
> By distributing the MAPE computations of a loop among agents

> By treating, inside the behavior of a managing agent, different
adaptation concerns

° By distinguishing between decentralized and centralized loop’s
control through specific ASM rule patterns
» Formal functional analysis
Validate adaptation requirements by simulation
Determine conflicting MAPE loops

o

o

o

Assert the system correctness by model checking a set of
properties expressing invariants and adaptation goals

Check for model completeness without overspecification
' P. Scandurra — SEAMS 2015 May 18-19, 2015, Firenze, Italy

17

Conclusion and future work

» Self-adaptive ASMs allowed us to model and analyze the
behavior of self-adaptive systems formally

° in terms of MAPE-K control loops executed by ASM agents

» Validation and verification techniques allowed us to ensure the
functional correctness of the adaptation logic by discovering
interfering adaptation concerns and goals

» In the future, we want to exploit runtime monitoring techniques for
runtime verification

» We also want to exploit extensions of ASMs with time models for

specifying time-triggered adaptation SR
THE END!

P. Scandurra — SEAMS 2015 May 18-19, 2015, Firenze, Italy

18

