Dettagli sull'Insegnamento per l'A.A. 2014/2015
Nome:
Analisi Funzionale (Istituzioni di Analisi Superiore mod.1) / Functional analysis
Informazioni
Crediti:
: Bachelor Degree in Mathematics 6 CFU (b)
Erogazione:
Bachelor Degree in Mathematics 3rd anno curriculum Generale Compulsory
Lingua:
Inglese
Prerequisiti
Mathematical Analysis (not only Calculus) in one and several space variable, Linear Algebra
(including abstract Vector Speces), Set Topology (including Compact Spaces) and
Metric Spaces, Ordinary differential equations.
Obiettivi
Learn the fundamental structures of Functional Analysis. Get familiar with the main examples of functional spaces, in particular with the theory of Hilbert spaces and Lebesgue spaces. Get familiar with the basic notions of operator theory. Be able to frame a functional equation in an abstract functional setting.
Sillabo
- Lebesgue Measure and Integration
- L^p Spaces
- Basic of Topological Vector Spaces, Normed and Banach Spaces, Linear Operators and linear functionals.
- Hilbert Spaces
- Weak topology, Weak * topology, weak compactness
- Applications of Baire Category in Functional Analysis: Uniform Boundedness, Open Mapping,
Closed Graph, Inverse Mapping.
- Banach and Hilbert adjointness, self-adjointness
- Compact Operators
- Riesz Fredholm spectral theory
Descrittori di Dublino
Alla fine del corso, lo studente dovrebbe
- Understand the theory
- Be able to solve problems
- Help to choose appropriate graduate studies
- Practice mathematical reasoning, organize topics in logical order, connect theory to applications,
elaborate independent proofs. Improve unconventional thinking.
- Get the math language to study more advanced textbooks and attend research oriented courses
Testi di riferimento
- Terence Tao, An introduction to measure theory. , American Mathematical Society, Providence, RI, ISBN: 978-0-8218-6919-2 . 2011.
- Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations. , Universitext. Springer, New York,. 2011. xiv+599 pp. ISBN: 978-0-387-70913-0
- Alberto Bressan, Lecture notes on functional analysis. With applications to linear partial different , Graduate Studies in Mathematics, 143. American Mathematical Society, Providence, RI,. 2013. xii+250 pp. ISBN: 978-0-8218-8771-4
- Lecture notes provided by the teacher
- Michael Reed, Barry Simon, Methods of modern mathematical physics. I. Functional analysis. Second edition. , Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York,. 1980. xv+400 pp. ISBN: 0-12-585050-6
- Stein, Elias M.; Shakarchi, Rami , Real analysis. Measure theory, integration, and Hilbert spaces. Princeton Lectures in Analysis, III. , Princeton University Press, Princeton, NJ,. 2005. xx+402 pp. ISBN: 0-691-11386-6
Modalità d'esame
Written test.
Aggiornamenti alla pagina del corso
Le informazioni sulle editioni passate di questo corso sono disponibili per i seguenti anni accademici:
Per leggere le informazioni correnti sul corso, se ancora erogato, consulta il catalogo corsi di ateneo.
Ultimo aggiornamento delle informazioni sul corso: 03 marzo 2015, 17:39