

Università degli Studi di L'Aquila - Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica Course catalogue

Page compiled on 19/11/2019

Programme of Course "Control systems"

- Code: I0062
- Type of course unit: Compulsory (Master Degree in Mathematical Engineering curriculum Comune)
- Level of course unit: Postgraduate Degrees
- Semester: 1

Number of ects credits: (Master Degree in Mathematical Engineering) 6 (workload 150 hours)

Teachers: Alessandro D'innocenzo (alessandro.dinnocenzo@univaq.it)

1	Course objectives	The course provides the basic methodologies for modeling, analysis and controller design for continuous-time linear time-invariant systems.
2	Course content and learning outcomes (dublin descriptors)	 Design for commodus-time intera time-invariant systems. Topics of the module include: Frequency domain models of Linear Systems: Laplace Transform, Transfer Function, Block diagrams. Time domain models of Linear Systems: State space representation. BIBO stability. Control specifications for transient and steady-state responses. Polynomial and sinusoidal disturbances rejection. The Routh-Hurwitz Criterion. PID controllers. Analysis and controller design using the root locus. Analysis and controller design using the eigenvalues assignment: controllability, observability, the separation principle. Reference inputs in state space representations. Controller design using MATLAB. Advanced topics in control theory. On successful completion of this module, the student should : on successful completion of this module, the student should: have knowledge and understanding of characteristics and properties regarding feedback control systems have knowledge and understanding of stability, transient and steady-state properties of feedback control systems, as well as metrics for characterising such properties of feedback control systems, as well as metrics for characterising such properties of feedback control systems, as well as metrics for characterising such properties of feedback control systems, as well as metrics for characterising such properties of feedback control systems, as the section sto be satisfied demonstrate capacity to design a control system architecture and a controller given a dynamical model of a plant and a set of specifications to be satisfied demonstrate capacity, when designing a control system architecture and a controller, to relate the design choices to practical constraints and performance metrics induced by a specific application domain be able to browse quickly or read carefully both technical and scientific papers or to at
3	Course prerequisites	Mathematical analysis

4	Teaching methodsand language	 Theory classes and exercise classes Language: English Reference textbooks R. C. Dorf, R. H. Bishop, <i>Modern Control Systems</i>. Prentice Hall. 2008.
5	Assessment methods	Written and oral tests. The written test consists of two applicative exercises and one theoretical question, and will last 2 hours. The oral test will be held the same day of the written test. No computers, books, or notes are allowed.