

Università degli Studi di L'Aquila - Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica Course catalogue

Page compiled on 20/08/2019

Programme of Integrated course "Advanced Analysis"

This course is composed of 2 Modules: 1) Advanced Analysis 1, 2) Advanced Analysis 2

• Code: DT0114

- Type of course unit: Compulsory (Master Degree in Mathematics curriculum Generale), Compulsory (Master Degree in Mathematical Engineering curriculum Comune)
- Level of course unit: Postgraduate Degrees
- Semester: 1

Number of ects credits: (Master Degree in Mathematics) 6 (workload 150 hours), (Master Degree in Mathematical Engineering) 6 (workload 150 hours)

Teachers: Corrado Lattanzio

Course objectives Knowledge of mathematical methods that are widely used by researchers in the area of Applied Mathematics, as Sobolev Spaces, distributions. Application of this knowledge to a variety of topics, including the basic equations of mathematical physics and some current research topics about linear and nonlinear partial differential equations.

3 Course prerequisites Basic notions of functional analysis, functions of complex values, standard properties of classical solutions of semilinear first order equations, heat equation, wave equation, Laplace and Poisson's equations.

4 **Teaching** methodsand language

Lectures

Language: English Reference textbooks

- G. Gilardi, Analisi 3. McGraw-Hill.
- V.S. Vladimirov, *Equations of Mathematical Physics*. Marcel Dekker, Inc..
- C.M. Dafermos, *Hyperbolic Conservation Laws in Continuum Physics*. Springer.
- L.C. Evans, Partial Differential Equations. AMS.
- M.E. Taylor, *Partial Differential Equations*, *Nonlinear equations*. Springer.
- H. Brezis, Sobolev Spaces and Partial Differential Equations. Springer.

Assessment 5 methods

Oral exam

Programme of Module "Advanced Anaysis 2"

Code: DT0115

- Type of course unit: Compulsory (Master Degree in Mathematics curriculum Generale)
- Level of course unit: Postgraduate Degrees
- · Semester: 2

Number of ects credits: (Master Degree in Mathematics) 6 (workload 150 hours)

Teachers: Stefano Spirito (stefano.spirito@univag.it)

Course objectives Aim of the course is the knowledge of advanced techniques of mathematical analysis and in particular the basic techniques of the modern theory of the partial differential equations.

2 Course content and learning outcomes (dublin descriptors)

Topics of the module include:

- Abstract Measure theory
- · AC and BV functions.
- Second order elliptic equations.
- · Variational methods.
- Fourier transforms.

On successful completion of this module, the student should:

- Aim of the course is to acquire Knowledge and Understanding of Advanced Techniques of 'Mathematical Analysis.
- applying the techniques learned to problems of partial differential equations
- Acquire the ability to understand what methods and techniques can be used in

		 various problems involving the partial differential equations. Acquire the ability 'to expose, explain and elaborate concepts and advanced analysis techniques. Acquire the ability 'to study and understand theorems and analysis techniques from books and advanced research products.
3	Course prerequisites	A good knowledge of the basic arguments of a course of Functional Analysis, in particular, a good knowledge of the theory of Lebesgue's integral ande the L^p spaces. The first module of the course, in particular a good knowledge of the theory of distributions and Sobolev spaces.
4	Teaching methodsand language	 Lectures. Language: English Reference textbooks L. Grafakos, Classical Fourier Analysis. P. Cannarsa and T. D'aprile, Introduction to Measure Theory and Functional Analysis. L. Evand and R. Garipey, Measure Theory and Fine Properties of Functions (Revised Edition). L.C. Evans, Partial differential equations.
5	Assessment methods	Written exams.