1. TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL MODELLING – FIRST YEAR
	ERASMUS MUNDUS INTERMATHS, MATHMODS, REALMATHS B (WITH HANNOVER AND LYON 1)
SUBJECTS	
Applied Partial Differential Equations (B. Rubino; S.Fagioli, 6 ECTS) TEAMS code: x3ee34u	Real and Functional Analysis (M. Di Francesco, M. Palladino 9 ECTS) TEAMS code: i3140fd
Introduction to Mathematical Control Theory (C. Pignotti, M. Palladino; 6 ECTS) TEAMS code: a517g2h	Dynamical Systems and Bifurcation Theory (B. Rubino, M. Palladino, 6 ECTS) TEAMS code: opfj7er
Italian Language for Foreigners (level A1): see pp. 20-24	

TIME ①	MONDAY	Class- room	TUESDAY	Class- room	WEDNESDAY	Classroom	THURSDAY	Classroom	FRIDAY	Classroom
08:30-09:30			Applied PDEs	A.1.7 Ricamo			Introduction to Mathematical Control Theory	A.1.7 Ricamo		
09:30-10:30			Applied PDEs	A.1.7 Ricamo	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Introduction to Mathematical Control Theory	A.1.7 Ricamo		
10:30-11:30			Real and Functional Analysis	A.1.7 Ricamo	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Applied PDEs	A.1.7 Ricamo		
11:30-12:30	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Real and Functional Analysis	A.1.7 Ricamo	Real and Functional Analysis	A.1.7 Ricamo	Applied PDEs	A.1.7 Ricamo	Applied PDEs	A.1.7 Ricamo
12:30-13:30	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Real and Functional Analysis	A.1.7 Ricamo	Real and Functional Analysis	A.1.7 Ricamo			Applied PDEs	A.1.7 Ricamo
14:30-15:30	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo				
15:30-16:30	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo				
16:30-17:30	Real and Functional Analysis	A.1.7 Ricamo								
17:30–18:30	Real and Functional Analysis	A.1.7 Ricamo								

2. TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – FIRST YEAR
	REALMATHS A (WITH AVEIRO, BRNO, KARLSTAD, GDANSK, KATOWICE, GLIWICE) REALMATHS WITH KNUST
SUBJECTS	
Applied Partial Differential Equations (D. Amadori, 6 ECTS) TEAMS code: bldsgpc	Introductory Real Analysis (R. Sampalmieri, M. Caponi, 9 ECTS) TEAMS code: 174ecq7
Control Systems and Machine Learning (M. Di Ferdinando, V. De Iuliis, 9 ECTS), TEAMS code: s687imw	Dynamical Systems and Bifurcation Theory (M. Palladino, 6 ECTS) TEAMS code: 43arj6c
Italian Language for Foreigners (level A1): see pp. 20-24	

TIME ①	MONDAY	Classroom	TUESDAY	Class- room	WEDNESDAY	Classroom	THURSDAY	Classroom	FRIDAY	Class- room
08:30-09:30	Introductory Real Analysis	A.1.7 Ricamo	Introductory Real Analysis	A1.6 Turing	Introductory Real Analysis	A.1.8 Ricamo				
09:30-10:30	Introductory Real Analysis	A.1.7 Ricamo	Introductory Real Analysis	A1.6 Turing	Introductory Real Analysis	A.1.8 Ricamo				
10:30-11:30	Introductory Real Analysis	A.1.7 Ricamo	Introductory Real Analysis	A1.6 Turing	Introductory Real Analysis	A.1.8 Ricamo	Control Systems and Machine Learning	A.1.8 Ricamo		
11:30-12:30			Dynamical Systems and Bifurcation Theory	A1.6 Turing	Applied PDEs	A.1.8 Ricamo	Control Systems and Machine Learning	A.1.8 Ricamo	Control Systems and Machine Learning	C1.10 De Meis
12:30-13:30			Dynamical Systems and Bifurcation Theory	A1.6 Turing	Applied PDEs	A.1.8 Ricamo	Control Systems and Machine Learning	A.1.8 Ricamo	Control Systems and Machine Learning	C1.10 De Meis
14:30-15:30	Dynamical Systems and Bifurcation Theory	A.2.5 Ricamo					Applied PDEs	A.1.8 Ricamo		
15:30-16:30	Dynamical Systems and Bifurcation Theory	A.2.5 Ricamo					Applied PDEs	A.1.8 Ricamo		
16:30-17:30	Control Systems and Ma- chine Learning	A.2.5 Ricamo	Applied PDEs	A1.6 Turing	Dynamical Systems and Bifurcation Theory	A.1.8 Ricamo				
17:30–18:30	Control Systems and Ma- chine Learning	A.2.5 Ricamo	Applied PDEs	A1.6 Turing	Dynamical Systems and Bifurcation Theory	A.1.8 Ricamo				

3. TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – FIRST YEAR
	REALMATHS (WITH LVIV POLYTECHNIC, ODESA, UZHHOROD - APPL MATH)
SUBJECTS	
Real and Functional Analysis (M. Di Francesco, M. Palladino 9 ECTS), TEAMS code: i3l40fd	A choice between: - Mathematics for decision making (M. Giuli, 6 ECTS) TEAMS code: q26ddqc
Introduction to Mathematical Control Theory (C. Pignotti, M. Palladino, 6 ECTS) TEAMS code: a517g2h	- Models of Non-equilibrium Phenomena: Theory and Simulations (M. Colangeli, 6 ECTS) TEAMS code: szm5och
Dynamical Systems and Bifurcation Theory (B.Rubino, M. Palladino, 6 ECTS) TEAMS code: opfj7er	Italian Language for Foreigners (level A1): see pp. 20-24

TIME Ø	MONDAY	Class- room	TUESDAY	Classroom	WEDNESDAY	Classroom	THURSDAY	Classroom	FRIDAY	Classroom
08:30-09:30							Introduction to Mathematical Control Theory	A.1.7 Ricamo		
09:30-10:30	Models of Non-equilibrium Phenomena	C1.16 De Meis			Introduction to Mathematical Control Theory	A.1.7 Ricamo	Introduction to Mathematical Control Theory	A.1.7 Ricamo		
10:30-11:30	Models of Non-equilibrium Phenomena	C1.16 De Meis	Real and Functional Analysis	A.1.7 Ricamo	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Models of Non-equilibrium Phenomena	Digital Class	Mathematics for decision making	Lab. Math. Mod.
11:30-12:30	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Real and Functional Analysis	A.1.7 Ricamo	Real and Functional Analysis	A.1.7 Ricamo	Models of Non-equilibrium Phenomena	Digital Class	Mathematics for decision making	Lab. Math. Mod.
12:30-13:30	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Real and Functional Analysis	A.1.7 Ricamo	Real and Functional Analysis	A.1.7 Ricamo	Models of Non-equilibrium Phenomena	Digital Class	Mathematics for decision making	Lab. Math. Mod.
14:30-15:30	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo				
15:30-16:30	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo				
16:30-17:30	Real and Functional Analysis	A.1.7 Ricamo								
17:30–18:30	Real and Functional Analysis	A.1.7 Ricamo					Mathematics for decision making	A1.1 Turing		
18:30–19:30							Mathematics for decision making	A1.1 Turing		

4. TIMETABLE: FIRST SEMESTER, A.Y. 2025/20256	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – FIRST YEAR
	REALMATHS (WITH LVIV)
SUBJECTS	
Applied Partial Differential Equations (D. Amadori, 6 ECTS) TEAMS code: bldsgpc	Control Systems and Machine Learning (M. Di Ferdinando, V. De Iuliis, 9 ECTS) TEAMS code: s687imw
Dynamical Systems and Bifurcation Theory (M. Palladino, 6 ECTS) TEAMS code: 43arj6c	Introduction to Mathematical Control Theory (C. Pignotti, M. Palladino, 6 ECTS) TEAMS code: a517g2h
Italian Language for Foreigners (level A1): see pp. 20-24	

TIME ∅	MONDAY	Class- room	TUESDAY	Class room	WEDNESDAY	Class- room	THURSDAY	Class- room	FRIDAY	Class- room
08:30-09:30							Introduction to Mathematical Control Theory	A.1.7 Ricamo		
09:30-10:30					Introduction to Mathematical Control Theory	A.1.7 Ricamo	Introduction to Mathematical Control Theory	A.1.7 Ricamo		
10:30-11:30					Introduction to Mathematical Control Theory	A.1.7 Ricamo	Control Systems and Machine Learning	A.1.8 Ricamo		
11:30-12:30	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	A1.6 Turing	Applied PDEs	A.1.8 Ricamo	Control Systems and Machine Learning	A.1.8 Ricamo	Control Systems and Machine Learning	C1.10 De Meis
12:30-13:30	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	A1.6 Turing	Applied PDEs	A.1.8 Ricamo	Control Systems and Machine Learning	A.1.8 Ricamo	Control Systems and Machine Learning	C1.10 De Meis
14:30-15:30	Dynamical Systems and Bifurcation Theory	A.2.5 Ricamo					Applied PDEs	A.1.8 Ricamo		
15:30-16:30	Dynamical Systems and Bifurcation Theory	A.2.5 Ricamo					Applied PDEs	A.1.8 Ricamo		
16:30-17:30	Control Systems and Machine Learning	A.2.5 Ricamo	Applied PDEs	A1.6 Turing	Dynamical Systems and Bifurcation Theory	A.1.8 Ricamo				
17:30–18:30	Control Systems and Machine Learning	A.2.5 Ricamo	Applied PDEs	A1.6 Turing	Dynamical Systems and Bifurcation Theory	A.1.8 Ricamo				

5. TIMETABLE: FIRST SEMESTER, A.Y. 2025/20256	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – FIRST YEAR
	REALMATHS (WITH KHARKIV – APPL MATH, OPTION 2)
SUBJECTS	
Mathematical Modelling and HPC Simulation of Natural Disasters (D.Pera, 6 ECTS) TEAMS code: tohk68w	Advanced Analysis (C. Lattanzio, M. Di Francesco, 6 ECTS) TEAMS code: mpolw7s
Artificial Intelligence and Machine Learning for Natural Hazards Risk Assessment (F. Di Michele, 6 ECTS) TEAMS code: h7npeqq	Time Series and Prediction (U. Triacca, 6 ECTS) TEAMS code: opq3io0
Mathematical Models for Collective Behaviour (D. Amadori, A. Esposito, 6 ECTS) TEAMS code: pkev7b5	Italian Language for Foreigners (level A1): see pp. 20-24

TIME ①	MONDAY	Class- room	TUESDAY	Class- room	WEDNESDAY	Class- room	THURSDAY	Class- room	FRIDAY	Class- room
08:30-09:30					Mathematical Modelling and HPC Simulation of Natural Disasters	HPC Lab			AI & MA for Natural Hazards Risk Assessment	HPC Lab
09:30-10:30					Mathematical Modelling and HPC Simulation of Natural Disasters	HPC Lab	AI & MA for Natural Hazards Risk Assessment	HPC Lab	AI & MA for Natural Hazards Risk Assessment	HPC Lab
10:30-11:30	Mathematical Models for Collective Behaviour	Lab.Mat. Mod.	Time Series and prediction	C1.16 De Meis			AI & MA for Natural Hazards Risk Assessment	HPC Lab	AI & MA for Natural Hazards Risk Assessment	HPC Lab
11:30-12:30	Mathematical Models for Collective Behaviour	Lab.Mat. Mod.	Time Series and prediction	C1.16 De Meis						
12:30-13:30	Mathematical Models for Collective Behaviour	Lab.Mat. Mod.	Time Series and prediction	C1.16 De Meis						
14:30-15:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing	Mathematical Models for Collective Behaviour	C1.16 De Meis	Advanced Analysis	A1.7 Turing	Mathematical Modelling and HPC Simul. of Nat. Disasters	HPC Lab
15:30-16:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing	Mathematical Models for Collective Behaviour	C1.16 De Meis	Advanced Analysis	A1.7 Turing	Mathematical Modelling and HPC Simul. of Nat. Disasters	HPC Lab
16:30-17:30							Advanced Analysis	A1.7 Turing	Mathematical Modelling and HPC Simul. of Nat. Disasters	HPC Lab
17:30–18:30	Time Series and prediction	A1.2 Turing								
18:30–19:30	Time Series and prediction	A1.2 Turing								

6.TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – FIRST YEAR
	REALMATHS (WITH UZHHOROD - Systems Analysis)
SUBJECTS	
Process and Operations Scheduling (S. Smriglio, 6 ECTS) TEAMS code: yetna33	Modelling and Control of Networked Distributed Systems (G. Pola, 6 ECTS) TEAMS code: xhcvv1g
Optimisation in Signal Processing and Wavelets (V. Protasov, 6 ECTS) TEAMS code: collujx	Machine learning for automation (A. D'Innocenzo, 6 ECTS) TEAMS code: x6lg8rp
Optimisation Models and Algorithms (C. Arbib, 6 ECTS) TEAMS code: lkrpq1i	Italian Language for Foreigners (level A1): see pp. 20-24

TIME ①	MONDAY	Class- room	TUESDAY	Class- room	WEDNESDAY	Classroom	THURSDAY	Class- room	FRIDAY	Class- room
08:30-09:30			Modelling and Control of Networked Distributed Systems	HPC Lab			Optimisation in Signal Processing and Wavelets	A1.1 Turing		
09:30-10:30			Modelling and Control of Networked Distributed Systems	HPC Lab	Optimisation Models and algorithms	C1.16 De Meis	Optimisation in Signal Processing and Wavelets	A1.1 Turing		
10:30-11:30	Process and Operations Scheduling	HPC Lab	Modelling and Control of Networked Distributed Systems	HPC Lab	Optimisation Models and algorithms	C1.16 De Meis	Optimisation in Signal Processing and Wavelets	A1.1 Turing	Optimisation Models and algorithms	A0.4 Turing
11:30-12:30	Process and Operations Scheduling	HPC Lab	Process and Operations Scheduling	HPC Lab	Optimisation in Signal Processing and Wavelets	HPC Lab			Optimisation Models and algorithms	A0.4 Turing
12:30-13:30	Process and Operations Scheduling	HPC Lab	Process and Operations Scheduling	HPC Lab	Optimisation in Signal Processing and Wavelets	HPC Lab			Optimisation Models and algorithms	A0.4 Turing
14:30-15:30									Modelling and control of networked distributed systems	A1.4 Turing
15:30-16:30									Modelling and control of networked distributed systems	A1.4 Turing
16:30-17:30			Machine learning for Automation	A0.4 Turing			Machine learning for Automation	A0.4 Turing		
17:30–18:30			Machine learning for Automation	A0.4 Turing			Machine learning for Automation	A0.4 Turing		
18:30-19:30							Machine learning for Automation	A0.4 Turing		

7. TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – SECOND YEAR
	REALMATHS (WITH TSNUK – APPL MATH) Double Degree with University of Monastir (UM)*
SUBJECTS	
Dynamical Systems and Bifurcation Theory (B. Rubino, M. Palladino, 6 ECTS, TEAMS code: opfj7er	Artificial Intelligence and Machine Learning for Natural Hazards Risk Assessment (F. Di Michele, 6 ECTS) TEAMS code: h7npeqq
Real and Functional Analysis (M. DiFrancesco, M. Palladino 9 ECTS), TEAMS code: i3l40fd	Mathematical Modelling and HPC Simulation of Natural Disasters (D. Pera, 6 ECTS) TEAMS code: tohk68w
Machine learning for automation (A. D'Innocenzo, 6 ECTS) TEAMS code: x6lg8rp	Italian Language for Foreigners (level A2) (D. Larivera, 3 ECTS) TEAMS code: yjark4e

^{*} The student from the partner university UM will have to take the course **Italian Language for Foreigners level A1** during the first semester (and not Italian A2 and Machine learning for automation)

TIME ①	MONDAY	Class- room	TUESDAY	Classroom	WEDNESDAY	Class- room	THURSDAY	Class- room	FRIDAY	Class- room
08:30-09:30					Mathematical Modelling and HPC Simulation of Natural Disasters	HPC Lab			AI & MA for Natural Hazards Risk Assessment	HPC Lab
09:30-10:30					Mathematical Modelling and HPC Simulation of Natural Disasters	HPC Lab	AI & MA for Natural Haz- ards Risk Assessment	HPC Lab	AI & MA for Natural Hazards Risk Assessment	HPC Lab
10:30-11:30			Real and Functional Analysis	A.1.7 Ricamo			AI & MA for Natural Haz- ards Risk Assessment	HPC Lab	AI & MA for Natural Hazards Risk Assessment	HPC Lab
11:30-12:30			Real and Functional Analysis	A.1.7 Ricamo	Real and Functional Analysis	A.1.7 Ricamo				
12:30-13:30			Real and Functional Analysis	A.1.7 Ricamo	Real and Functional Analysis	A.1.7 Ricamo				
14:30-15:30	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo			Mathematical Modelling and HPC Simulation of Natural Disasters	HPC Lab
15:30-16:30	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	A.1.7 Ricamo			Mathematical Modelling and HPC Simulation of Natural Disasters	HPC Lab
16:30-17:30	Real and Functional Analysis	A.1.7 Ricamo	Machine learning for Automation	A0.4 Turing	Italian A2	A1.4 Turing	Machine learning for Automation	A0.4 Turing	Mathematical Modelling and HPC Simulation of Natural Disasters	HPC Lab
17:30–18:30	Real and Functional Analysis	A.1.7 Ricamo	Machine learning for Automation	A0.4 Turing	Italian A2	A1.4 Turing	Machine learning for Automation	A0.4 Turing		
18:30–19:30					Italian A2	A1.4 Turing	Machine learning for Automation	A0.4 Turing		

8.TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – SECOND YEAR
	REALMATHS (WITH TSNUK – Decision Making)
SUBJECTS	
Systems modelling and simulation (D. Bianchi) TEAMS code: u1mt56q	Italian Language for Foreigners (level A2) (D. Larivera, 3 ECTS) TEAMS code: yjark4e
Optimal control (E. De Santis, 6 ECTS) TEAMS code: cq7pv2y	Social networks (S. Leucci, 3 ECTS), TEAMS code: ae2gwi4
Modelling and Control of Networked Distributed Systems (G. Pola) TEAMS code: xhcvv1g	Process and operations scheduling (S. Smriglio) TEAMS code: yetna33
Non-Cooperative Networks (G. Proietti, 3 ECTS) TEAMS code: n7nt6ls	

TIME ①	MONDAY	Class- room	TUESDAY	Class- room	WEDNESDAY	Class- room	THURSDAY	Class- room	FRIDAY	Class- room
08:30-09:30			Modelling and Control of Net- worked Distributed Systems	HPC Lab	Optimal control	A.0.6 Ricamo	Optimal control	A1.4 Turing		
09:30-10:30			Modelling and Control of Net- worked Distributed Systems	HPC Lab	Optimal control	A.0.6 Ricamo	Optimal control	A1.4 Turing		
10:30-11:30	Process and operations scheduling	HPC Lab	Modelling and Control of Net- worked Distributed Systems	HPC Lab	Optimal control	A.0.6 Ricamo	Optimal control	A1.4 Turing		
11:30-12:30	Process and operations scheduling	HPC Lab	Process and operations scheduling	HPC Lab						
12:30-13:30	Process and operations scheduling	HPC Lab	Process and operations scheduling	HPC Lab						
14:30-15:30	Systems modelling and simulation	HPC Lab	Non-Cooperative Netw.* / Social Netw.*	A0.6 Ricamo					Modelling and Control of Networked Distributed Systems	A1.4 Turing
15:30-16:30	Systems modelling and simulation	HPC Lab	Non-Cooperative Netw. / Social Netw.	A0.6 Ricamo					Modelling and Control of Networked Distributed Systems	A1.4 Turing
16:30-17:30					Italian A2	A1.4 Turing	Non-Cooperative Netw. / Social Netw.	A1.5 Turing	Systems modelling and simulation	A0.4 Turing
17:30–18:30					Italian A2	A1.4 Turing	Non-Cooperative Netw. / Social Netw.	A1.5 Turing	Systems modelling and simulation	A0.4 Turing
18:30–19:30					Italian A2	A1.4 Turing			Systems modelling and simulation	A0.4 Turing

*Lectures of Non-Cooperative Networks will take place until mid-November 2025; lectures of Social Networks will take place from mid-November until January 2026.

9. TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – SECOND YEAR
	INTERNATIONAL STUDY TRACKS "RealMaths" Double Degree with SUT
SUBJECTS	
Advanced analysis (C. Lattanzio, M. Di Francesco, 6 ECTS) TEAMS code: mpolw7s	Introduction to Mathematical Control Theory (C. Pignotti, M. Palladino, 6 ECTS) TEAMS code: a517g2h
Deterministic Modelling in Population Dynamics and Epidemiology (M. Di Francesco, A. Esposito, 6 ECTS) TEAMS code: svjwm7a	Time Series and Prediction (U. Triacca, 6 ECTS) TEAMS code: opq3io0
Italian Language for Foreigners (level A1): see pp. 20-24	

TIME ②	MONDAY	Classroom	TUESDAY	Classroom	WEDNESDAY	Classroom	THURSDAY	Classroom	FRIDAY	Clas sroo m
08:30-09:30							Introduction to Mathematical Control Theory	A.1.7 Ricamo		
09:30-10:30					Introduction to Mathematical Control Theory	A.1.7 Ricamo	Introduction to Mathematical Control Theory	A.1.7 Ricamo		
10:30-11:30			Time Series and Prediction	C1.16 De Meis	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Deterministic Modelling in Population Dynamics and Epidemiology	Lab. Mat. Mod.		
11:30-12:30	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Time Series and Prediction	C1.16 De Meis			Deterministic Modelling in Population Dynamics and Epidemiology	Lab. Mat. Mod		
12:30-13:30	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Time Series and Prediction	C1.16 De Meis			Deterministic Modelling in Population Dynamics and Epidemiology	Lab. Mat. Mod.		
14:30-15:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing	Deterministic Modelling in Population Dynamics and Epidemiology	HPC Lab	Advanced Analysis	A1.7 Turing		
15:30-16:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing	Deterministic Modelling in Population Dynamics and Epidemiology	HPC Lab	Advanced Analysis	A1.7 Turing		
16:30-17:30							Advanced Analysis	A1.7 Turing		
17:30–18:30	Time Series and Prediction	A1.2 Turing								
18:30–19:30	Time Series and Prediction	A1.2 Turing								

10. TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – SECOND YEAR
	RealMaths(with TDTU)
SUBJECTS	
Advanced Analysis (C. Lattanzio, M. Di Francesco, 9 ECTS) TEAMS code: mpolw7s	Computational Methods in Health Care Systems – Computational methods in epidemiology (C. Scalone, 6 ECTS) TEAMS code: cyb719e
Modelling and Control of Networked Distributed Systems (G.Pola, 6 ECTS) TEAMS code: xhcvv1g	Mathematical Modelling of Multi-Agent Systems - Deterministic modelling in population dynamics and epidemiology (M. Di Francesco, A. Esposito, 6 ECTS) TEAMS code: svjwm7a
Italian Language for Foreigners (level A1): see pp. 20-24	

TIME ∅	MONDAY	Class- room	TUESDAY	Class- room	WEDNESDAY	Class- room	THURSDAY	Class- room	FRIDAY	Class- room
08:30-09:30			Modeling and Control of Net- worked Distributed Systems	HPC Lab					Computational methods in epidemiology	A.1.7 Ricamo
09:30-10:30			Modeling and Control of net- worked distributed systems	HPC Lab					Computational methods in epidemiology	A.1.7 Ricamo
10:30-11:30			Modeling and Control of net- worked distributed systems	HPC Lab			Deterministic modelling in Pop Dyn and Epid	Lab.Mat. Mod	Computational methods in epidemiology	A.1.7 Ricamo
11:30-12:30	Computational methods in epidemiology	C2.10 De Meis					Deterministic modelling in Pop Dyn and Epid	Lab.Mat. Mod		
12:30-13:30	Computational methods in epidemiology	C2.10 De Meis					Deterministic modelling in Pop Dyn and Epid	Lab.Mat. Mod		
14:30-15:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing	Deterministic modelling in Pop Dyn and Epid	HPC Lab	Advanced Analysis	A1.7 Turing	Modelling and Control of Networked Distributed Systems	A1.4 Turing
15:30-16:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing	Deterministic modelling in Pop Dyn and Epid	HPC Lab	Advanced Analysis	A1.7 Turing	Modelling and Control of Networked Distributed Systems	A1.4 Turing
16:30-17:30							Advanced Analysis)	A1.7 Turing		
17:30–18:30										

11. TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – SECOND YEAR
	REALMATH (WITH IFNUL)
SUBJECTS	
Real and Functional Analysis (M. Di Francesco, M. Palladino, 9 ECTS) TEAMS code: i3140fd	Introduction to Mathematical Control Theory (C. Pignotti, M. Palladino, 6 ECTS) TEAMS code: a517g2h
Models of Non-equilibrium Phenomena: Theory and Simulations (M. Colangeli, 6 ECTS) TEAMS code: szm5och	Italian Language for Foreigners (level A1): see pp. 20-24

TIME ①	MONDAY	Class- room	TUESDAY	Class- room	WEDNESDAY	Class- room	THURSDAY	Class- room	FRIDAY	Class- room
08:30-09:30							Introduction to Mathematical Control Theory	A.1.7 Ricamo		
09:30-10:30	Models of Non-equilibrium Phenomena	C1.16 De Meis			Introduction to Mathematical Control Theory	A.1.7 Ricamo	Introduction to Mathematical Control Theory	A.1.7 Ricamo		
10:30-11:30	Models of Non-equilibrium Phenomena	C1.16 De Meis	Real and Functional Analysis	A.1.7 Ricamo	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Models of Non-equilibrium Phenomena	Digital Class		
11:30-12:30	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Real and Functional Analysis	A.1.7 Ricamo	Real and Functional Analysis	A.1.7 Ricamo	Models of Non-equilibrium Phenomena	Digital Class		
12:30-13:30	Introduction to Mathematical Control Theory	A.1.7 Ricamo	Real and Functional Analysis	A.1.7 Ricamo	Real and Functional Analysis	A.1.7 Ricamo	Models of Non-equilibrium Phenomena	Digital Class		
14:30-15:30										
15:30-16:30										
16:30-17:30	Real and Functional Analysis	A.1.7 Ricamo								
17:30–18:30	Real and Functional Analysis	A.1.7 Ricamo								

12. TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL MODELLING – SECOND YEAR
	INTERMATHS STUDY TRACK "Cancer Modelling and Simulation"
SUBJECTS	
Advanced Analysis (C. Lattanzio, M. Di Francesco, 6 ECTS) TEAMS code: mpolw7s	Cancer genetics and biology for mathematical modelling (A. Tessitore, 6 ECTS) TEAMS code: eynzfua The course starts on September 29th
Biomathematics (E. Radici, 6 ECTS) TEAMS code: lzkd17x	Mathematical fluid and biofluid dynamics (D. Donatelli, G. Ciampa; 6 ECTS) TEAMS code: 5tmj9a9
Systems Biology (A. Borri, 6 ECTS) TEAMS code: 8i9zkg0	Italian Language for Foreigners (level A2) (D. Larivera, 3 ECTS) TEAMS code: yjark4e

TIME Ø	MONDAY	Class- room	TUESDAY	Class- room	WEDNESDAY	Class- room	THURSDAY	Class- room	FRIDAY	Class- room
08:30-09:30	Mathematical fluid and biofluid dynamics	A.1.1 Ricamo	Mathematical fluid and biofluid dynamics	A.1.1 Ricamo			Biomathematics	A.1.1 Ricamo		
09:30-10:30	Mathematical fluid and biofluid dynamics	A.1.1 Ri.camo	Mathematical fluid and biofluid dynamics	A.1.1 Ricamo			Biomathematics	A.1.1 Ricamo		
10:30-11:30	Cancer genetics and biology for mathematical modelling	Digital Class	Mathematical fluid and biofluid dynamics	A.1.1 Ricamo	Mathematical fluid and biofluid dynamics	A.1.1 Ricamo	Biomathematics	A.1.1 Ricamo		
11:30-12:30	Cancer genetics and biology for mathematical modelling	Digital Class	Cancer genetics and biology for mathematical modelling	Lab,Mat. Mod.	Mathematical fluid and biofluid dynamics	A.1.1 Ricamo				
12:30-13:30	Cancer genetics and biology for mathematical modelling	Digital Class	Cancer genetics and biology for mathematical modelling	Lab,Mat. Mod.	Mathematical fluid and biofluid dynamics	A.1.1 Ricamo				
14:30-15:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing			Advanced Analysis	A1.7 Turing	Systems Biology	A.1.1 Ricamo
15:30-16:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing			Advanced Analysis	A1.7 Turing	Systems Biology	A.1.1 Ricamo
16:30-17:30	Systems Biology	HPC Lab	Biomathematics	HPC Lab	Italian A2	A1.4 Turing	Advanced Analysis	A1.7 Turing	Systems Biology	A.1.1 Ricamo
17:30–18:30	Systems Biology	HPC Lab	Biomathematics	HPC Lab	Italian A2	A1.4 Turing				
18:30–19:30					Italian A2	A1.4 Turing				

13. TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL MODELLING – SECOND YEAR
	INTERMATHS STUDY TRACK "Modelling and Simulation of Infectious Diseases"
COURSES	
Advanced Analysis (C. Lattanzio, M. Di Francesco, 6 ECTS) TEAMS code: mpolw7s	Time series and prediction (U.Triacca, 6 ECTS) TEAMS code: opq3io0
Mathematical Modelling of Multi-Agent Systems - Deterministic modelling in population dynamics and epidemiology (M. Di Francesco, A. Esposito, 6 ECTS) TEAMS code: svjwm7a	Computational Methods in Health Care Systems – Computational methods in epidemiology (C. Scalone, 6 ECTS) TEAMS code: cyb719e
Modelling and control of networked distributed systems (G.Pola, 6 ECTS) TEAMS code: xhcvv1g	Italian Language for Foreigners (A2) (D. Larivera, 3 ECTS) TEAMS code: yjark4e

TIME ②	MONDAY	Class- room	TUESDAY	Classroom	WEDNESDAY	THURSDAY		Class- room	FRIDAY	Class- room
08:30-09:30			Modelling and Control of Net- worked Distributed Systems	HPC Lab					Computational methods in epidemiology	A.1.7 Ricamo
09:30-10:30			Modelling and Control of Net- worked Distributed Systems	HPC Lab					Computational methods in epidemiology	A.1.7 Ricamo
10:30-11:30			Modelling and Control of Net- worked Distributed Systems / Time series and prediction	HPC Lab / C1.16 De Meis			Deterministic Modelling in Population Dynamics and Epidemiology	Lab.Mat. Mod	Computational methods in epidemiology	A.1.7 Ricamo
11:30-12:30	Computational methods in epidemiology	C2.10 De Meis	Time series and prediction	C1.16 De Meis			Deterministic Modelling in Population Dynamics and Epidemiology	Lab.Mat. Mod		
12:30-13:30	Computational methods in epidemiology	C2.10 De Meis	Time series and prediction	C1.16 De Meis			Deterministic Modelling in Population Dynamics and Epidemiology	Lab.Mat. Mod		
14:30-15:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing	Deterministic Modelling in Population Dynamics and Epidemiology	НРС	Advanced Analysis	A1.7 Turing	Modelling and Control of Networked Distributed Systems	A1.4 Turing
15:30-16:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing	Deterministic Modelling in Population Dynamics and Epidemiology	НРС	Advanced Analysis	A1.7 Turing	Modelling and Control of Networked Distributed Systems	A1.4 Turing
16:30-17:30					Italian A2	A1.4 Turing	Advanced Analysis	A1.7 Turing		
17:30–18:30	Time series and prediction	A1.2 Turing			Italian A2	A1.4 Turing				
18:30–19:30	Time series and prediction	A1.2 Turing			Italian A2	A1.4 Turing				

14. TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL MODELLING – SECOND YEAR
	INTERMATHS STUDY TRACK "Mathematical modelling for health care"
COURSES	
Advanced Analysis (C. Lattanzio, M. Di Francesco, 6 ECTS) TEAMS code: mpolw7s	System Biology (A. Borri, 6 ECTS) TEAMS code: 8i9zkg0
Biomathematics (E. Radici, 6 ECTS) TEAMS code: lzkd17x	Computational Methods in Health Care Systems (C. Scalone, 6 ECTS) TEAMS code: cyb719e
Mathematical Modelling of Multi-Agent Systems (M. Di Francesco, A. Esposito, 6 ECTS) TEAMS code: svjwm7a	Italian Language for Foreigners (A2) (D. Larivera, 3 ECTS) TEAMS code: yjark4e

TIME Ø	MONDAY	Class- room	TUESDAY	Class- room	WEDNESDAY	Class- room	THURSDAY	Classroom	FRIDAY	Class- room
08:30-09:30							Biomathematics A.1.1 Ricamo		Computational methods in epidemiology	A.1.7 Ricamo
09:30-10:30							Biomathematics		Computational methods in epidemiology	A.1.7 Ricamo
10:30-11:30							Biomathematics / Mathematical Mod- elling of Multi-Agent Systems	A.1.1 Ricamo / Lab. Mat. Mod	Computational methods in epidemiology	A.1.7 Ricamo
11:30-12:30	Computational methods in epidemiology	C2.10 De Meis					Mathematical Modelling of Multi-Agent Systems	Lab. Mat. Mod		
12:30-13:30	Computational methods in epidemiology	C2.10 De Meis					Mathematical Modelling of Multi-Agent Systems	Lab. Mat. Mod		
14:30-15:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing	Mathematical Modelling of Multi-Agent Systems	НРС	Advanced Analysis	A1.7 Turing	Systems Biology	A.1.1 Ricamo
15:30-16:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing	Mathematical Modelling of Multi-Agent Systems	НРС	Advanced Analysis	A1.7 Turing	Systems Biology	A.1.1 Ricamo
16:30-17:30	Systems Biology	HPC Lab	Biomathematics	HPC Lab	Italian A2	A1.4 Turing	Advanced Analysis	A1.7 Turing	Systems Biology	A.1.1 Ricamo
17:30–18:30	Systems Biology	HPC Lab	Biomathematics	HPC Lab	Italian A2	A1.4 Turing				
18:30–19:30					Italian A2	A1.4 Turing				

15. TIMETABLE: FIRST SEMESTER, A.Y. 2025/20256	MASTER'S DEGREE IN MATHEMATICAL MODELLING – SECOND YEAR
	INTERMATHS STUDY TRACK "Modelling and simulation for the mitigation of natural disasters"
COURSES	
Advanced Analysis (C. Lattanzio, M. Di Francesco, 6 ECTS) TEAMS code: mpolw7s	Artificial Intelligence and Machine Learning for Natural Hazards Risk Assessment (F. Di Michele, 6 ECTS) TEAMS code: h7npeqq
Mathematical Fluid Dynamics (D. Donatelli, G. Ciampa, 6 ECTS) TEAMS code: 5tmj9a9	Modelling and simulation of water-related natural hazards (M. Di Risio, D. Pasquali, 6 ECTS) TEAMS code: gnk0a98
Mathematical Modelling and HPC Simulation of Natural Disasters (D. Pera, 6 ECTS) TEAMS code: tohk68w	Italian Language for Foreigners (A2) (D. Larivera, 3 ECTS) TEAMS code: yjark4e

TIME ②	MONDAY	Class- room	TUESDAY	Class- room	WEDNESDAY	Class- room	THURSDAY	Class- room	FRIDAY	Class- room
08:30-09:30	Mathematical fluid dynamics	A.1.1 Ricamo	Mathematical fluid dynamics	A.1.1 Ricamo	Mathematical Modelling and HPC Simulation of Natural Disasters	HPC Lab			AI & MA for Natural Hazards Risk Assessment	HPC Lab
09:30-10:30	Mathematical fluid dynamics	A.1.1 Ricamo	Mathematical fluid dynamics	A.1.1 Ricamo	Mathematical Modelling and HPC Simulation of Natural Disasters	HPC Lab	AI & MA for Natural Hazards Risk Assessment	HPC Lab	AI & MA for Natural Hazards Risk Assessment	HPC Lab
10:30-11:30	Modelling and simulation of water-related natural hazards	A.1.1 Ricamo	Mathematical fluid dynamics	A.1.1 Ricamo	Mathematical fluid dynamics	A.1.1 Ricamo	AI & MA for Natural Hazards Risk Assessment	HPC Lab	AI & MA for Natural Hazards Risk Assessment	HPC Lab
11:30-12:30	Modelling and simulation of water-related natural hazards	A.1.1 Ricamo			Mathematical fluid dynamics	A.1.1 Ricamo				
12:30-13:30	Modelling and simulation of water-related natural hazards	A.1.1 Ricamo			Mathematical fluid dynamics	A.1.1 Ricamo				
14:30-15:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing	Modelling and simulation of water-related natural hazards	A1.4 Turing	Advanced Analysis	A1.7 Turing	Mathematical modelling and HPC simulation of natural disasters	HPC Lab
15:30-16:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing	Modelling and simulation of water-related natural hazards	A1.4 Turing	Advanced Analysis	A1.7 Turing	Mathematical modelling and HPC simulation of natural disasters	HPC Lab
16:30-17:30					Italian A2	A1.4 Turing	Advanced Analysis	A1.7 Turing	Mathematical modelling and HPC simulation of natural disasters	HPC Lab
17:30- 18:30					Italian A2	A1.4 Turing				
18:30- 19:30					Italian A2	A1.4 Turing	_			

16. TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL MODELLING – SECOND YEAR
	MATHMODS STUDY TRACK "Mathematical modelling and optimisation"
COURSES	
Advanced Analysis (C. Lattanzio, M. Di Francesco, 6 ECTS) TEAMS code: mpolw7s	Modelling and Control of Networked Distributed Systems (G. Pola, 6 ECTS) TEAMS code: xhcvv1g
Process and Operations Scheduling (S. Smriglio, 6 ECTS) TEAMS code: yetna33	Optimisation Models and Algorithms (C. Arbib, 6 ECTS) TEAMS code: lkrpq1i
Optimisation in Signal Processing and Wavelets (V. Protasov, 6 ECTS) TEAMS code: collujx	Italian Language for Foreigners (level A2) (D. Larivera, 6 ECTS) TEAMS code: yjark4e

TIME ⊕	MONDAY	Class- room	TUESDAY	Class- room	WEDNESDAY	Class- room	THURSDAY	Class- room	FRIDAY	Class- room
08:30-09:30			Modelling and Control of Networked Distributed Systems	HPC Lab			Optimisation in Signal Processing and Wavelets	A1.1 Turing		
09:30-10:30			Modelling and Control of Networked Distributed Systems	HPC Lab	Optimisation Models and algorithms	C1.16 De Meis	Optimisation in Signal Processing and Wavelets	A1.1 Turing		
10:30-11:30	Process and Operations Scheduling	HPC Lab	Modelling and Control of Networked Distributed Systems	HPC Lab	Optimisation Models and algorithms	C1.16 De Meis	Optimisation in Signal Processing and Wavelets	A1.1 Turing	Optimisation Models and algorithms	A0.4 Turing
11:30-12:30	Process and Operations Scheduling	HPC Lab	Process and Operations Scheduling	HPC Lab	Optimisation in Signal Processing and Wavelets	HPC Lab			Optimisation Models and algorithms	A0.4 Turing
12:30-13:30	Process and Operations Scheduling	HPC Lab	Process and Operations Scheduling	HPC Lab	Optimisation in Signal Processing and Wavelets	HPC Lab			Optimisation Models and algorithms	A0.4 Turing
14:30-15:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing			Advanced Analysis	A1.7 Turing	Modelling and control of networked distributed systems	A1.4 Turing
15:30-16:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing			Advanced Analysis	A1.7 Turing	Modelling and control of networked distributed systems	A1.4 Turing
16:30-17:30					Italian A2	A1.4 Turing	Advanced Analysis	A1.7 Turing		
17:30–18:30					Italian A2	A1.4 Turing				
18:30–19:30					Italian A2	A1.4 Turing				

17. TIMETABLE: FIRST SEMESTER, A.Y. 2025/20256	MASTER'S DEGREE IN MATHEMATICAL MODELLING – SECOND YEAR
	MATHMODS STUDY TRACK "Mathematical models in social sciences"
COURSES	
Mathematical Modelling and HPC Simulation of Natural Disasters (D. Pera, 6 ECTS) TEAMS code: tohk68w	Advanced Analysis (C. Lattanzio, M. Di Francesco, 6 ECTS) TEAMS code: mpolw7s
Artificial Intelligence and Machine Learning for Natural Hazards Risk Assessment (F. Di Michele, 6 ECTS) TEAMS code: h7npeqq	Machine learning for automation (A. D'Innocenzo, 6 ECTS) TEAMS code: x6lg8rp
Mathematical Models for Collective Behaviour (D. Amadori, A. Esposito, 6 ECTS) TEAMS code: pkev7b5	Italian Language for Foreigners (level A2) (D. Larivera, 3 ECTS) TEAMS code: yjark4e

TIME ①	MONDAY	Classroom	TUESDAY	Class- room	WEDNESDAY	Class- room	THURSDAY	Classroom	FRIDAY	Class- room
08:30-09:30					Mathematical Modelling and HPC Simulation of Natural Disasters	HPC Lab			AI & MA for Natural Hazards Risk Assessment	HPC Lab
09:30-10:30					Mathematical Modelling and HPC Simulation of Natural Disasters	HPC Lab	AI & MA for Natural Hazards Risk Assessment	HPC Lab	AI & MA for Natural Hazards Risk Assessment	HPC Lab
10:30-11:30	Mathematical Models for Collective Behaviour	Lab. Mat. Mod					AI & MA for Natural Hazards Risk Assessment	HPC Lab	AI & MA for Natural Hazards Risk Assessment	HPC Lab
11:30-12:30	Mathematical Models for Collective Behaviour	Lab. Mat. Mod								
12:30-13:30	Mathematical Models for Collective Behaviour	Lab. Mat. Mod								
14:30-15:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing	Mathematical Models for Collective Behaviour	C1.16 De Meis	Advanced Analysis	A1.7 Turing	Mathematical modelling and HPC simulation of natural disasters	HPC Lab
15:30-16:30	Advanced Analysis	A1.7 Turing	Advanced Analysis	A1.4 Turing	Mathematical Models for Collective Behaviour	C1.16 De Meis	Advanced Analysis	A1.7 Turing	Mathematical modelling and HPC simulation of natural disasters	HPC Lab
16:30-17:30			Machine learning for automation	A0.4 Turing	Italian A2	A1.4 Turing	Advanced Analysis/ Machine learning for automation	A1.7 Turing / A0.4 Turing	Mathematical modelling and HPC simulation of natural disasters	HPC Lab
17:30–18:30			Machine learning for automation	A0.4 Turing	Italian A2	A1.4 Turing	Machine learning for automation	A0.4 Turing		
18:30–19:30					Italian A2	A1.4 Turing	Machine learning for automation	A0.4 Turing		

18. TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – FIRST YEAR
	Local students
COMPULSORY COURSES	
Advanced Analysis (C. Lattanzio, M. Di Francesco, 9 ECTS) TEAMS code: mpolw7s	Advanced Scientific Computing (C. Scalone, 6 ECTS) TEAMS code: cyb719e
Dynamical systems and bifurcation theory (B. Rubino, M. Palladino, 6 ECTS) TEAMS code: opfj7er	Stochastic numerics laboratory (S. Di Giovacchino, 3 ECTS) TEAMS code: 0fk7ppw
Mathematical fluid dynamics (D. Donatelli, G. Ciampa, 6 ETCS) TEAMS code: 5tmj9a9	Advanced English listening and speaking (M. Fiorenza, 3 ECTS) TEAMS code: 2xk09d9 The course starts on the October 1st.
Control systems and Machine Learning (M. Di Ferdinando, V. De Iuliis, 6 ECTS) TEAMS code: s687imw	Italian Language for Foreigners (level A1): see pp. 20-24

TIME ①	MONDAY	Classroom	TUESDAY	Classroom	WEDNESDAY	Classroom	THURSDAY	Class- room	FRIDAY	Class- room
08:30-09:30	Mathematical fluid dynamics	A.1.1 Ricamo	Mathematical fluid dynamics	A.1.1 Ricamo	Advanced English listening and speaking	Digital Class			Advanced Scientific Computing	A.1.7 Ricamo
09:30-10:30	Mathematical fluid dynamics	A.1.1 Ricamo	Mathematical fluid dynamics	A.1.1 Ricamo	Advanced English listening and speaking	Digital Class			Advanced Scientific Computing	
10:30-11:30			Mathematical fluid dynamics	A.1.1 Ricamo	Advanced English listening and speaking / Mathematical fluid dynamics	Digital Class / A.1.1 Ricamo	Control Systems and Machine Learning	A1.8 Ricamo	Advanced Scientific Computing	A.1.7 Ricamo
11:30-12:30	Advanced Scientific Computing	C2.10 De Meis			Mathematical fluid dynamics	A.1.1 Ricamo	Control Systems and Machine Learning	A1.8 Ricamo	Control Systems and Machine Learning	C1.10 De Meis
12:30-13:30	Advanced Scientific Computing	C2.10 De Meis			Mathematical fluid dynamics	A.1.1 Ricamo	Control Systems and Machine Learning	A1.8 Ricamo	Control Systems and Machine Learning	C1.10 De Meis
14:30-15:30	Advanced Analysis / Dynamical Systems and Bifurcation Theory	A1.7 Turing / A.1.7 Ricamo	Advanced Analysis Dynamical Systems and BifurcationTheory	A1.4 Turing / A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	Aula Biancofiore A.1.7 Ricamo	Advanced Analysis	A1.7 Turing	Stochastic numerics laboratory	C1.9 De Meis
15:30-16:30	Advanced Analysis / Dynamical Systems and Bifurcation Theory	A1.7 Turing /	Advanced Analysis Dynamical Systems and BifurcationTheory	A1.4 Turing / A.1.7 Ricamo	Dynamical Systems and Bifurcation Theory	Aula Biancofiore A.1.7 Ricamo	Advanced Analysis	A1.7 Turing	Stochastic numerics laboratory	C1.9 De Meis
16:30-17:30	Control Systems and Machine Learning	A.2.5 Ricamo					Advanced Analysis	A1.7 Turing	Stochastic numerics labora- tory	C1.9 De Meis
17:30–18:30	Control Systems and Ma- chine Learning	A.2.5 Ricamo								

19. TIMETABLE: FIRST SEMESTER, A.Y. 2025/2026	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – SECOND YEAR
	Local students
COMPULSORY COURSES	
Numerical Methods for PDEs (V. Protasov, 3 ECTS) TEAMS code: yl2pqtf The course starts on November 3 rd .	Advanced Scientific Computing (C. Scalone, 6 ECTS) TEAMS code: cyb719e

TIME ①	MONDAY	Class- room	TUESDAY	Class- room	WEDNESDAY	Class- room	THURSDAY	Classroom	FRIDAY	Class- room
08:30-09:30					Numerical Methods for PDEs	Lab. Mat. Mod			Advanced Scientific Computing	A.1.7 Ricamo
09:30-10:30					Numerical Methods for PDEs	Lab. Mat. Mod			Advanced Scientific Computing	A.1.7 Ricamo
10:30-11:30					Numerical Methods for PDEs	Lab. Mat. Mod			Advanced Scientific Computing	A.1.7 Ricamo
11:30-12:30	Advanced Scientific Computing	C2.10 De Meis					Numerical Methods for PDEs	HPC Lab		
12:30-13:30	Advanced Scientific Computing	C2.10 De Meis					Numerical Methods for PDEs	HPC Lab		
14:30-15:30										
15:30-16:30										
16:30-17:30										
17:30–18:30										
18:30–19:30										

22 SEPTEMBER – 24 OCTOBER (5 WEEKS)	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – FIRST YEAR
	REALMATHS A AND REALMATHS B
Italian Language for Foreigners (level A1) (S. Giuliani, 3 ECTS) TEAMS code: gr92ubc	

TIME Ø	MONDAY	Classroom	TUESDAY	Classroom	WEDNESDAY	Classroom	THURSDAY	Classroom	FRIDAY	Classroom
08:30-09:30										
09:30-10:30										
10:30-11:30										
11:30-12:30										
12:30-13:30										
14:30-15:30					REALMATHS A	A 1.8 RICAMO	REALMATHS B	A 1.6 TURING	REALMATHS B	A 1.7 TURING
15:30-16:30					REALMATHS A	A 1.8 RICAMO	REALMATHS B	A 1.6 TURING	REALMATHS B	A 1.7 TURING
16:30-17:30							REALMATHS A	A 1.6 TURING		
17:30–18:30							REALMATHS A	A 1.6 TURING		

27 OCTOBER – 28 NOVEMBER (5 WEEKS)	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – FIRST YEAR
	REALMATHS A AND REALMATHS B
Italian Language for Foreigners (level A1) (S. Giuliani, 3 ECTS) TEAMS code: gr92ubc	

TIME Ø	MONDAY	Classroom	TUESDAY	Classroom	WEDNESDAY	Classroom	THURSDAY	Classroom	FRIDAY	Classroom
08:30-09:30										
09:30-10:30										
10:30-11:30										
11:30-12:30										
12:30-13:30										
14:30-15:30					REALMATHS A	A 1.8 RICAMO			REALMATHS B	A 1.7 TURING
15:30-16:30					REALMATHS A	A 1.8 RICAMO			REALMATHS B	A 1.7 TURING
16:30-17:30										
17:30–18:30										

6 OCTOBER – 31 OCTOBER (4 WEEKS)	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – FIRST YEAR
	INTERMATHS, MATHMODS AND LOCAL
Italian Language for Foreigners (level A1) (Alessandrini, 3 ECTS) TEAMS code: exj0ucc	

TIME ①	MONDAY	Classroom	TUESDAY	Classroom	WEDNESDAY	Classroom	THURSDAY	Classroom	FRIDAY	Classroom
08:30-09:30										
09:30-10:30										
10:30-11:30										
11:30-12:30										
12:30-13:30										
14:30-15:30			LOCAL	A 1.6 TURING						
15:30-16:30			LOCAL	A 1.6 TURING						
16:30-17:30			INTERMATHS	A 1.7 RICAMO	MATHMODS	A 1.7 RICAMO				
17:30–18:30			INTERMATHS	A 1.7 RICAMO	MATHMODS	A 1.7 RICAMO				

3 NOVEMBER – 5 DECEMBER (5 WEEKS)	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – FIRST YEAR
	INTERMATHS, MATHMODS AND LOCAL
Italian Language for Foreigners (level A1) (Alessandrini, 3 ECTS) TEAMS code: exj0ucc	

TIME ①	MONDAY	Classroom	TUESDAY	Classroom	WEDNESDAY	Classroom	THURSDAY	Classroom	FRIDAY	Classroom
08:30-09:30										
09:30-10:30										
10:30-11:30										
11:30-12:30										
12:30-13:30										
14:30-15:30			LOCAL	A 1.6 TURING			MATHMODS	A 1.6 TURING	MATHMODS	A 0.4 TURING
15:30-16:30			LOCAL	A 1.6 TURING			MATHMODS	A 1.6 TURING	MATHMODS	A 0.4 TURING
16:30-17:30			INTERMATHS	A 1.7 RICAMO	INTERMATHS	A 1.7 RICAMO	LOCAL	A 1.6 TURING		
				A 1.7		A 1.7		A 1.6		

9 DECEMBER – 12 DECEMBER (1 WEEK)	MASTER'S DEGREE IN MATHEMATICAL ENGINEERING – FIRST YEAR
	INTERMATHS, MATHMODS AND LOCAL
Italian Language for Foreigners (level A1) (Alessandrini, 3 ECTS) TEAMS code: exj0ucc	

TIME Ø	MONDAY	Classroom	TUESDAY	Classroom	WEDNESDAY	Classroom	THURSDAY	Classroom	FRIDAY	Classroom
08:30-09:30										
09:30-10:30										
10:30-11:30										
11:30-12:30										
12:30-13:30										
14:30-15:30			LOCAL	A 1.6 TURING						
15:30-16:30			LOCAL	A 1.6 TURING						
16:30-17:30			INTERMATHS	A 1.7 RICAMO	MATHMODS	A 1.7 RICAMO				
17:30–18:30			INTERMATHS	A 1.7 RICAMO	MATHMODS	A 1.7 RICAMO				

Schedule for the tutoring activities, 1st semester 2025/2026

Introduction to Mathematical Control Theory: Thursday 8:30-10:30, room A.1.7 Ricamo (Dr. I. Issa)

Dynamical systems and Bifurcation Theory (I4W): Wednesday 16.30-18.30, room A.1.8 Ricamo (Dr. L. Pescatore)

Dynamical systems and Bifurcation Theory (I4Y): (Dr. L. Pescatore)

Applied PDE (I4W): Tuesday 16:30-18:30, room A1.6 Turing (Dr. G. Cipollone)

Applied PDE (I4Y): Friday 11.30-13.30, room A.1.7 Ricamo (Dr. G. Cianfarani Carnevale)

Introductory Real Analysis: Wednesday 08.30-10.30, room A.1.8 Ricamo (Dr. V. Iorio and Dr. M. Kamath Katapady)