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Abstract In this paper we analyze propagating fronts in the context of hyperbolic
theories of dissipative processes. These can be considered as a natural alternative to
the more classical parabolic models. Emphasis is given toward the numerical com-
putation of the invasion velocity. The first Section is devoted to the presentation of
different models for reaction-diffusion phenomena, supporting the idea of the ad-
vantages of a description based on hyperbolic equations. Among other advantages,
such modeling could provide a detailed description of the transient dynamics of the
phenomenon under observation. Three basic numerical schemes are also presented;
two of them can, in principle, be applied to general hyperbolic systems, at the price
of reduced performances when dealing with discontinuous initial data. In the sec-
ond Section, we focus on a specific class of 2× 2 system corresponding to second
order partial differential equations in one space dimension, adapted for simplified
modeling of reaction-diffusion equations. Specifically, we focus on notable traveling
wave solutions, called propagation fronts. Particular cases where the speed of prop-
agation can be explicitly computed are also provided. The third (and final) Section
starts with the presentation of the phase-plane algorithm which bears a reliable ap-
proximation of the propagation speed, assessing its validity in the case with damping
where an explicit formula is available. Then, we propose two PDE-based algorithms
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to approximate such velocity, named, respectively, scout&spot algorithm (based on
tracking the level curve of some intermediate value of the profile) and LeVeque–Yee
formula (given by the average value of the discrete transport velocity). Finally, we
attest the well-foundedness of both the approaches and conclude by suggesting the
second one as more efficient tool in the determination of the speed.

1 Models for reaction-diffusion phenomena

In this Section, we present different type of models useful for describing reaction-
diffusion phenomena. The standard approach gives raise to a parabolic equation
which is very well suited to explain simple events such as heat transmission in close-
to-equilibrium regime. In the standard linear case, such modeling has been criticised
for three main reasons:

1. infinite speed of propagation;
2. lack of time-delay and related inertial effects;
3. excepionality of well-posed boundary value problems.

In addition to the discussion relative to inertia (started by Eckart in the 40s [18] and
continued in [21, 35] in the context of relativity), other fields where the hyperbolic
terms are relevant for applications are, among others, in biological tissues [17, 44,
47, 48], population growth [40], forest fire models [41]...

Here, starting from Subsection 1.1 (dealing with scalar equations) and proceed-
ing with Subsection 1.2 (focusing on systems), we follow the point of view that a
description making use of hyperbolic equations –starting from the basic example
of the telegraph equation– is viable and more appropriate when the relaxation time
required to sense the change of the overall phenomenon is sufficiently large as com-
pared to the diffusivity coefficient. Indeed, differences may emerge in the transient
time, whose cumulation may influence significantly the final outcome.

Section ends with a presentation of three different numerical schemes which
can be easily implemented in order to obtain reliable approximation of a reaction-
diffusion model of hyperbolic type. We stress that we do not regard hyperbolic nu-
merical schemes as a tool for approximating parabolic equations; rather, we focus on
hyperbolic models considered as a different language useful for describing dissipa-
tive mechanisms in a modified manner which could be interesting in the modelling
of distinct phenomena in far-from-equilibrium regimes.

1.1 Diffusion is not always a parabolic mechanism

The standard approach to heat conduction in a homogeneous medium is based on
the continuity relation linking the scalar unknown variable u with the vector-valued
flux function v, by means of the balance identity
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d
dt

∫
Ω

u(x, t)dx+
∫

∂Ω

v ·ndσ =
∫

Ω

f dx,

where Ω is an arbitrarily chosen control region with dx corresponding volume ele-
ment, n is the outward normal to the smooth boundary ∂Ω with dσ boundary ele-
ment, and f is a volume contribution, to be considered, at first, as a given external
constraint.

Applying Divergence Theorem, we can consider the localised version

∂tu+divx v = f , (1.1)

where u and v describe respectively (heat) density and (heat) flux. The former is a
scalar quantity; the latter is a vector with same dimension of the space variable x.

To provide a closed system, equation (1.1) has to be coupled with some relation
between u and v. A frequent choice is the Fourier’s law

v =−agradxu (1.2)

for some non-negative proportionality parameter a, which may explicitly depend on
space x and time t –as in the case of heterogeneous media– and also on the density
variable itself u and its derivatives. Here, we focus mainly on the case where a is
a given positive constant, i.e. a > 0. Linear relation (1.2) is also called Fick’s law
when considered in bio-mathematical settings, Ohm’s law in electromagnetism, and
Darcy’s law in porous media.

Coupling identity (1.1) with relation (1.2) gives raise to the balance law

∂tu = divx (agradxu)+ f . (1.3)

While the continuity equation (1.1) can be considered reliable in general contexts,
equation (1.2) should be regarded as a single possible choice among many others. In
fact, quoting Lars Onsager (see [43]), Fourier’s law is an approximate description
of the process of conduction, which neglects the (short) relaxation time τ needed
for acceleration. For practical purposes (as in heat conduction) the time-lag can be
neglected in all cases that are likely to be studied. Nevertheless, in many applica-
tions –among others, for far-from-equilbrium regimes, such as the study of living
tissues and thermal resonance– extensions of the Fourier’s law are required, with
the specific aim of providing a more robust model.

A first significant alternative to (1.2) is supported by the intuition that a delayed
version should hold in place of the instantaneous response. The fact that the system
requires a strictly positive amount of time τ to sense the gradient change translates
into an identity of the phase-lag relationship

v(x, t + τ) =−agradxu(x, t). (1.4)

Unfortunately, as proved in [27], the phase-lag model is ill-posed in the sense of
Hadamard since it lacks of continuous dependence with respect to the initial data
(see also [16]).
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Surprisingly enough, well-posedness can be restored by truncating the Taylor’s
expansion for the unknown v. Assuming τ to be small, we can consider the approx-
imation

v(x, t + τ) = v(x, t)+ τ∂tv(x, t)+o(τ)

≈ v(x, t)+ τ ∂tv(x, t),

giving raise to the Maxwell–Cattaneo’s law. Putting together with the balance law
(1.1), we obtain the (hyperbolic) reaction-diffusion system with relaxation{

∂tu+divxv = f ,

τ∂tv+agradxu =−v.
(1.5)

The Maxwell–Cattaneo’s law can be considered as a way for incorporating into
the diffusion modelling some additional physical terms arising in the framework
of Extended Irreversible Thermodynamics, [13, 29]. Such law, to be considered as
a constitutive identity, has been originally proposed by Cattaneo [8, 9], following
some pioneering intuition of James Clerk Maxwell (among others, let us quote [28,
42]). Sometimes, equation (1.5) is attributed to Vernotte [46], and –more rarely– to
Chester [10]. Extensions has been also proposed in [12].

Eliminating the unknown v in the coupled system (1.1) and (1.5), we obtain the
one-field equation, namely

τ∂ttu+∂t (u− τ f ) = divx (agradxu)+ f . (1.6)

The focal idea is that the balance between the flux v and the gradient gradxu of
the density u is achieved only asymptotically in time, with decay described by the
relaxation time τ > 0. Such quantity can be regarded as the characteristic time for
the crossover between ballistic motion and the onset of diffusion.

The Maxwell–Cattaneo’s law furnishes the differential version of the delayed
response to a change in the gradient gradxu as described by a memory kernel given
by the exponential-rate law

v(x, t) = v0(x)e−t/τ − 1
τ

∫ t

0
e−(t−s)/τ agradxu(x,s)ds

which corresponds to the analogous formula in the context of viscoelasticity. Inci-
dentally, let us observe that the nonlocality of the time-integral –to be compared with
the instantaneous relationship (1.4)– can be regarded as a partial justification of the
fact that the reaction-diffusion system (1.5) is proved to be time-locally well-posed.

The main flaw is that equation (1.6) can violate the second law of thermodynam-
ics, admitting scenarios where heat appear to be moving from cold to hot (see [31]).
In this respect, correction to the notion of entropy have been proposed in order to
partially solve the problem (for the case with no source term, see [15]).

An alternative approach is based on the postulation that the usual continuity equa-
tion (1.1) should be replaced by a delayed identity
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∂tu(x, t + τ)+divx v(x, t) = f (x, t).

Truncating again the Taylor’s expansion for u with respect to the second argument,
we end up with

τ ∂ttu+∂tu+divx v = f . (1.7)

Then, coupling with the standard Fourier’s law (1.2), equation (1.7) gives the so-
called (hyperbolic) reaction-diffusion equation with damping

τ ∂ttu+∂tu = divx (agradxu)+ f . (1.8)

An alternative approach leading to a variation of (1.8) is proposed in [1], where
the hyperbolic equation (1.8) is obtained by starting from space–time duality of a
Minkowski space, and a simple Lorentz transformation, that are basic to the the-
ory of special relativity. The starting point is an adapted version of the continuity
equation, namely

∂tu+div(t,x) w = f (τ > 0),

where div(t,x) is the scalar product of the operator (i
√

τ ∂t ,∂x1 , . . . ,∂xn) against the
extended (n+1)−dimensional flux w. Assuming the extended Fourier’s relation

w =−agrad(t,x)u,

where grad(t,x) = (i
√

τ ∂t ,gradx), we infer

τ∂t(a∂tu)+∂tu = divx(agradxu)+ f ,

which coincides with (1.8) when a ≡ 1. However, the latter equation give rise to
significant conceptual issues that makes the theory somewhat controversial. Among
others, some quantities into play are described by complex numbers, with values
involving imaginary “densities”, which are hard to be interpreted.

Finally, let us determine an intermediate form somewhat in between (1.8) and
(1.6). Let us denote by τ1 and τ2 the parameters for (1.7) and (1.5), respec-
tively. Combining the delayed version of the continuity equation and the Maxwell–
Cattaneo’s law {

τ1∂ttu+∂tu+divx v = f ,

τ2∂tv+v+agradxu = 0.

Differentiating the first equation with respect to t, taking the divergence with respect
to x of the second equation and subtracting, we obtain the one-field equation for u

τ1τ2∂tttu+(τ1 + τ2)∂ttu+∂t (u− τ2 f ) = divx (agradxu)+ f .

In the regime of product τ1τ2 small with respect to the other 0-th/1-st order terms
in τ1 and τ2, the third order time derivative can be disregarded (if bounded), thus
giving raise to the hyperbolic equation

τ∂ttu+∂t (u−σ f ) = divx (agradxu)+ f . (1.9)
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where τ := τ1 + τ2 and σ := τ2. In particular, note that 0≤ σ ≤ τ for any choice of
non-negative τ1 and τ2.

1.2 Reaction-diffusion by means of PDE systems

Passing to vector-valued density function u ∈ Rp, some modifications have to be
taken into account. First of all, the vectorial form of the continuity equation becomes

∂tu+Divx V = f, (1.10)

where Div denotes the divergence operator applied to each row of the matrix V, and
f is some given vector-valued function.

Again, some additional relations coupling the dynamical variables u and V are
required to close the system. As before, these could be of different nature. Denot-
ing by Gradx the jacobian operator and having in mind the Fourier’s law, we can
conceive a relation of the following form

V = linear functional applied to Gradxu
=−AGradxu.

for some (4th-order) tensor-valued function A. Coupling with (1.10), the above iden-
tity gives the (parabolic) reaction-diffusion system

∂tu = Divx (AGradxu)+ f, (1.11)

which can be regarded as the vectorial extension of the scalar equation (1.3).
As in Subsection 1.1, we may search for alternatives to the Fourier’s law, the first

being the Maxwell–Cattaneo’s law. In vectorial version, this reads as

τ∂tV+V =−AGradxu.

Of course, the latter equality can be generalized to the (more realistic) case in which
any line of the flux matrix V has a different delay τ1, . . . ,τp. However, for the sake
of simplicity, we will mainly concentrate on the case of a single time-scale τ .

Coupling with the continuity equation (1.10), we end up with the (hyperbolic)
reaction-diffusion system with relaxation{

∂tu+DivxV = f,
τ∂tV+AGradxu =−V.

Applying ∂t to the first equation, Divx to the second and taking the difference, we
deduce the one-field system

τ∂ttu+∂t (u− τf) = Divx (AGradxu)+ f. (1.12)
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The hyperbolic system (1.12) can be understood as a possible singular perturbation
of the parabolic limit system (1.11).

Alternatively, we can follow the strategy previously proposed considering a de-
layed continuity equality, which ends up in the (hyperbolic) reaction-diffusion sys-
tem with damping

τ∂ttu+∂tu = Divx
(
AGradxu

)
+ f. (1.13)

to be regarded as the vectorial version of (1.8).
In order to derive a sort of interpolation between (1.12) and (1.13), we follow

the strategy proposed in deducing equation (1.9), that is considering delays in both
continuity identity and flux constitutive equality, with small relaxation times τ1 and
τ2, so that the term with the product τ1τ2 can be formally disregarded. In addition,
restricting the attention to

A= constant and f = f(u),

we end up with the system

τ∂ttu+∂t {u−σ f(u)}= Divx {AGradxu}+ f(u), (1.14)

Later on, it will be transparent how the apparently harmless term σdf(u), negligible
for σ small, may affect the transient dynamics and plays a crucial role also in the
long run.

In the class described by system (1.14), there are some significant limiting
regimes, with respect to the values of the parameters τ and σ ∈ [0,τ]:

i. σ = τ = 0 (undelayed continuity/undelayed flux):

∂tu = Divx {AGradxu}+ f(u);

ii. σ = 0, τ > 0 (delayed continuity/undelayed flux):

τ∂ttu+∂tu = Divx {AGradxu}+ f(u);

iii.σ = τ > 0 (undelayed continuity/delayed flux):

τ∂ttu+∂t{u− τf(u)}= Divx {AGradxu}+ f(u).

Additional specifications can be required on the zero-th order term f to add struc-
ture to the whole system. In the scalar case, any continuous function f has a smooth
primitive, producing a corresponding potential W , i.e. W ′ = − f . Differently, when
the dimension is strictly greater than 1, additional constraints are needed in order to
make this requirement to be satisfied. Specifically, for smooth functions, a necessary
condition for the existence of a potential function W : Rp→ Rp such that

graduW (u) =−f(u), (1.15)

is requiring that the jacobian matrix df of f is symmetric, that is
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df(u)> = df(u). (1.16)

Such condition is also sufficient if the domain for the variable u is simply connected
or star-shaped.

Assuming the symmetry condition (1.16), system (1.14) is endowed with a nat-
ural Lyapunov functional, i.e. a global function which is not-increasing along any
given trajectory t 7→ u(·, t) . To simplify the formalism, we concentrate on the one-
dimensional spatial case, limiting ourselves to

τ∂ttu+∂t {u−σ f(u)}= A∂xxu+ f(u), (1.17)

For τ = σ = 0, we obtain the standard parabolic reaction-diffusion system

∂tu = A∂xxu+ f(u) (1.18)

Property (1.15) guarantees the presence of a variational structure: the functional

E0[u] :=
∫
R

{
1
2 A∂xu ·∂xu+W (u)

}
dx,

together with some appropriate integrability conditions at ±∞, is a Lyapunov func-
tional for the system (1.18). Indeed, multiplying by ∂tu and integrating by parts,
there holds

d
dt

E0[u]+
∫
R
|∂tu|2 dx = 0,

exhibiting a dissipative property for E0, playing the role of an energy functional.
Similar considerations can be done also in the case (1.17), giving raise to a dif-

ferential equality for the modified energy

Eτ [u] := 1
2 τ|∂tu|2 +E0[u].

Then, setting Qσ := I−σdf(u), there holds

d
dt

Eτ [u]+
∫
R

Qσ ∂tu ·∂tudx = 0.

Again, choosing σ ≥ 0 sufficiently small so that Qσ > 0, dissipation is transparent.

1.3 Three basic numerical schemes in one space dimension

For u ∈Rp and in one space dimension, the tensor A reduces now to a p× p matrix
A, that is A= A = (ai1

1`) since two of the four indeces are now fixed and equal to 1.
For the sake of simplicity, we limit ourselves to the case A = aI for some constant
a > 0. Hence, we consider the system in one space-dimension

τ∂ttu+∂t {u−σ f(u)}= a∂xxu+ f(u). (1.19)



Analysis and numerics for hyperbolic reaction-diffusion models 9

Let us stress once more that the idea is not to consider hyperbolic models as pertur-
bations of the limiting parabolic ones, but rather to explore numerical approximation
of the hyperbolic equations regarded as intriguing models on their own with differ-
ent properties, with particular care to the transient behavior. Later on, we will test
and compare the numerical schemes with specific attention to their capability of
providing precise approximations of the propagation speed of the special solutions
called fronts.

First-order reduction algorithm

System (1.19) has an immediate numerical description, obtained by rewriting it in
first-order form as {

∂tu = v,
τ ∂tv = a∂xxu+ f(u)−{I−σ df(u)}v.

(1.20)

Firstly, we discretize the spatial part by introducing a uniform mesh with step dx,
du j

dt
= v j

τ
dv j

dt
=

a
dx2

(
u j+1−2u j +u j−1

)
+ f(u j)−

{
I−σ df(u j)

}
v j

(1.21)

Then, a subsequent time-discretization, that can be performed in different ways, is
applied. To start with, we choose an implicit-explicit scheme (IMEX), limiting the
implicit description to the linear part of the system, so that

un+1
j −un

j

dt
= vn+1

j

τ
vn+1

j −vn
j

dt
=

a
dx2

(
un+1

j+1−2un+1
j +un+1

j−1

)
+ f(un

j)−vn+1
j +σdf(un

j)v
n
j

which gives the first-order (reduction) algorithm
un+1

j −dtvn+1
j = un

j

α

(
−un+1

j+1 +2un+1
j −un+1

j−1

)
+(1+β )vn+1

j = vn
j +β f(un

j)

+σβ df(un
j)v

n
j ,

(1.22)

where α := adt/τdx2, β := dt/τ . Solving such an implicit-explicit algorithm fur-
nishes the numerical approximation of the real solution(

un+1

vn+1

)
= A−1

(
un

vn +β f(un)+σβ df(un)vn dt

)
where A describes the coefficients of the left-hand side matrix in (1.22).
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Liénard-type algorithm

A second type of algorithm is inspired by the so-called Liénard second order equa-
tion which is

τ
d2u
dt2 +g(u)

du
dt

+h(u) = 0.

for some given functions g and h. The above equation can be rewritten as a first
order system by setting

τ
du
dt

= v−G(u),
dv
dt

=−h(u)

where G is a primitive of the function g. Applied to system (1.19), let us consider an
algorithm, which will be later named Liénard-type algorithm, based on the decom-
position {

τ∂tu = v−u+σ f(u),
∂tv = a∂xxu+ f(u).

(1.23)

As before, discretizing with respect to a mesh with step dx, we infer
τ

du j

dt
= σ f(u j)−u j +v j

dv j

dt
=

a
dx2

(
u j+1−2u j +u j−1

)
+ f(u j).

(1.24)

At the continuous level, systems (1.20) and (1.23), and the corresponding semi-
discrete algorithms, viz. systems (1.21) and (1.24), are completely equivalent, the
difference being only in the choice of the variable v.

Distinctions emerge in the subsequent step, where the time discretization is taken
into account and the difference between linear (implicit) vs nonlinear (explicit) dis-
cretizations emerges. On top of that, we observe that the Liénard-type algorithm
does not require an explicit computation of the jacobian matrix d f at the value un

j ;
hence, in principle, it could be considered also for less smooth reaction term f.

Proceeding in the same spirit as above, we infer
τ

un+1
j −un

j

dt
= σ f(un

j)−un+1
j +vn+1

j

vn+1
j −vn

j

dt
=

a
dx2

(
un+1

j+1−2un+1
j +un+1

j−1

)
+ f(un

j)

from which we obtain the IMEX linear system (1+β )un+1
j −βvn+1

j = un
j +βσ f(un

j)

α

(
−un+1

j+1 +2un+1
j −un+1

j−1

)
+vn+1

j = vn
j + f(un

j)dt
(1.25)
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with α := adt/dx2 and β := dt/τ . The solution of such an iteration provides the
numerical approximation of the solution (u,v)(

un+1

vn+1

)
= A−1

(
un

j +βσ f(un
j)

vn
j + f(un

j)dt

)
where A describes the coefficients of the left-hand side matrix in (1.25).

Kinetic algorithm

A third viable algorithm is limited to the special case σ = τ > 0. In such a situation,
let us start back from the derivation of the model, i.e. the coupling of the balance
law together with the Maxwell–Cattaneo’s relation,

∂tu+∂xv = f(u), τ ∂tv+v =−a∂xu.

Here, τ and a can be considered as diagonal matrices with elements (τ1, . . . ,τn) and
(a1, . . . ,an), with components τi and ai which are considered possibly different one
from the other. Therefore, we end up with the system{

∂tui +∂xvi = fi(u1, . . . ,un),

τi ∂tvi +ai ∂xui =−vi.
(1.26)

The coupling is due to the presence of the term f = ( f1, . . . , fn) in the first equation.
The coefficients of the principal part of the differential operator at the left-hand

side of (1.26) are described by the block-diagonal matrix A= blockdiag(A1, . . . ,An)
with

Ai :=
(

0 1
ai/τi 0

)
i = 1, . . . ,n.

Therefore, the eigenvalues of the matrix A with size 2n, are given by the roots of the
polynomial

p(λ ) = det(A−λ I) =
n

∏
i=1

(
λ

2−ρ
2
i
)
,

where ρi :=
√

ai/τi, are λ =±ρi for i = 1, . . . ,n.
Introducing the diagonal variables (r,s) = (r1, . . . ,rn,s1, . . . ,sn), defined by

ri :=
1
2

(
ui−

vi

ρi

)
, si :=

1
2

(
ui +

vi

ρi

)
,

system (1.26) becomes
∂tri−ρi∂xri =

1
2τi

(−ri + si)+
1
2

fi(r1 + s1, . . . ,rn + sn),

∂tsi +ρi∂xsi =
1

2τi
(+ri− si)+

1
2

fi(r1 + s1, . . . ,rn + sn).
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As before, we firstly consider a spatial discretization with a uniform mesh of step
dx. Taking into account the up-wind nature of the model, we obtain

dri, j

dt
−ρi

ri, j+1− ri, j

dx
+

1
2τi

(+ri, j− si, j) =
1
2

fi(r1 + s1, . . . ,rn + sn),

dsi, j

dt
+ρi

si, j− si, j−1

dx
+

1
2τi

(−ri, j + si, j) =
1
2

fi(r1 + s1, . . . ,rn + sn).

Next, we follow the same strategy of the IMEX algorithm, that is we discretize
implicitly only the linear part of the system. Thus, we infer

rn+1
i, j − rn

i, j

dt
− ρ

dx
(
rn+1

i, j+1− rn+1
i, j
)
− 1

2τi

(
−rn+1

i, j + sn+1
i, j
)
=

1
2

fi(rn + sn),

sn+1
i, j − sn

i, j

dt
+

ρ

dx
(
sn+1

i, j − sn+1
i, j−1

)
− 1

2τi

(
rn+1

i, j − sn+1
i, j
)
=

1
2

fi(rn + sn),

that gives
(1+αi +βi)rn+1

i, j −αirn+1
i, j+1−βisn+1

i, j = rn
i, j +

1
2

fi(rn + sn)dt,

−βirn+1
i, j −αisn+1

i, j−1 +(1+αi +βi)sn+1
i, j = sn

i, j +
1
2

fi(rn + sn)dt,

where αi = ρi dt/dx, βi = dt/2τi. Again, denoting by A the coefficients’ matrix of
the couple (r,s) in the above system, we obtain the iteration formula(

rn+1

sn+1

)
= A−1

(
rn + f(rn + sn)dt/2
sn + f(rn + sn)dt/2

)
,

defining the mapping at the base of the numerical algorithm.

2 Some waves are better than others

In this Section the attention moves towards a class of particularly significant spe-
cial solutions: the traveling waves. Such solutions are indeed supported by hyper-
bolic reaction-diffusion system corresponding to scalar parabolic reaction-diffusion
equations for both monostable and bistable reaction terms. Moreover, we focus on a
special class of waves, called propagation fronts explored in details in the case of a
bistable reaction term. Special cases where the speed of propagation can be explic-
itly computed are also provided. A detailed discussion on the monostable case can
be found in [22] (see also [6]).
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2.1 Traveling waves

Among the infinitely many solutions of a partial differential equations, some solu-
tions exhibits usually an augmented “stability”, inherited by the additional amount
of internal symmetry. A recurrent type of such kind of solutions are the so-called
planar traveling waves (or simply traveling waves), i.e. solutions of the form

u(x, t) := φ(k ·x− ct) (2.1)

for some unitary vector k. Here φ is called the profile of the wave and c its propa-
gation speed.

For such special solutions, PDEs are reduced to ODEs with unknowns depending
on the scalar variable ξ := k ·x−ct and for a value c to be determined together with
the function φ . As an example, inserting the ansatz (2.1) in (1.14) and noticing that

Gradxu =
dφ

dξ
⊗k,

Divx

{
A
(

dφ

dξ
⊗k
)}

= ADivx

(
dφ

dξ
⊗k
)
= A

(
d2φ

dξ 2 ⊗k
)
,

we end up with an ODE for the profile φ , parametrized by the velocity c,

A
(

d2φ

dξ 2 ⊗k
)
+ c2

τ
d2φ

dξ 2 + c{I−σdf(φ)} dφ

dξ
+ f(φ) = 0.

Since the above system is autonomous, the profile is determined up to transla-
tions. In particular, translation φ δ := φ(·−δ ) with δ ∈ R of a given traveling wave
φ = φ(·) is itself a traveling wave solution for the same equation. Such properties
have an immediate consequence: the derivative of φ with respect to its argument is
an eigenfunction for the corresponding linearized operator at φ relative to the eigen-
value λ = 0. This influences the stability properties of the wave, dictating the fact
that, at most, orbital stability could be expected, meaning convergence of small per-
turbations to the manifold Φ :={φ δ : δ ∈ R}. Presence/absence of an asymptotic
phase –viz. convergence to a definite element of the manifold Φ– is the (natural)
subsequent issue.

Depending on specific properties of the profile function φ , different names are
associated to traveling waves:

i. if φ converges to some asymptotic states φ± (which are necessarily two equilibria
of the model) with φ− 6= φ+, the solution is called a front;

ii. if φ converges to the same asymptotic state φ (again, equilibrium of the model),
the solution is said to be a pulse;

iii. if φ is periodic, the solution is a wave-train.

In the state space, the three configurations correspond, respectively, to the pres-
ence of a heteroclinic orbit, a homoclinic orbit, a cycle. From now on, we focus on
the analysis of fronts; also, we restrict the attention to the spatial one-dimensional
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case. A further reduction concerns with the size of the vector u which is, from
the time being, regarded as a scalar quantity u, thus restricting the attention to the
second-order scalar equation

τ ∂ttu+∂t {u−σ f (u)}= a∂xxu+ f (u). (2.2)

where f is an appropriate functions and τ,σ ,a are positive constants with σ ∈ [0,τ].

Monostable and bistable nonlinearities

Following [2, 3], we focus on two types of nonlinearities.

i. Monostable. The function f is assumed to be smooth, strictly positive in some
fixed interval (0,1), negative in (−∞,0)∪ (1,+∞), with simple zeros;

ii. Bistable. The function f is assumed to be smooth, strictly positive in some fixed
interval (−∞,0)∪ (α,1), negative in (0,α)∪ (1,+∞), with simple zeros.

In both situations, we introduce the corresponding potential

W (u) :=−
∫ u

0
f (s)ds

The function W is decreasing for the monostable regime and it has a double-well
form for the bistable one (see Fig.1).

The former case, whose prototype is f (u) ∝ u(1−u), corresponds to a logistic-
type reaction term and it is usually referred to as Fisher–KPP equation (using the
initials of the names Kolmogorov, Petrovskii and Piscounov). The potential corre-
sponding to the logistic function f (u) = κ u(1−u) is

W (u) = 1
6 κ
(
−3u2 +2u3) ,

drawn in Figure 1 (continuous line). Different kind of monostable reaction function
f are the Gompertz term, i.e. f (u) = κ u lnu, and von Bertalanffy term, i.e. f (u) =
κ(uµ − u) with µ ∈ (0,1), corresponding potentials being W (u) = κu2(2ln |u| −
1)/4 and W (u) = κ

{
u2/2−uµ+1/(µ +1)

}
, respectively. The main difference is in

the location of the tangent line at u = 0, vertical in the last two cases, and playing a
crucial role in the statement of existence of propagating fronts.

The latter, whose behaviour is roughly given by the third order polynomial
f (u) ∝ u(u−α)(1−u) with α ∈ (0,1), is called Allen–Cahn equation (sometimes,
also bear the names of Nagumo and/or Ginzburg–Landau). The potential which cor-
responds to f (u) = κ u(u−α)(1−u) is

W (u) = 1
12 κ u2{6α−4(1+α)u+3u2} . (2.3)

The presence of the additional intermediate zero of f given by α emerged in eco-
logical context where it describes the so-called Allee-type effect, needed when co-
operation is required for survival (see [14] for a detailed description of the topic).
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-0.2

-0.1

0.1

Fig. 1 The potentials W relative to the functions f (u) = u(1− u) (monostable, continuous) and
f (u) = κu(1−u)(u−α) with κ = 7 and α = 0.4 (bistable, dashed).

2.2 Propagating fronts

Both monostable and bistable nolinearities share a common crucial feature: they
support existence of heteroclinic traveling waves.

Definition 2.1 A propagating front is a traveling wave solution for a given PDE
system having the special form u(x, t) = φ(ξ ) where ξ := x− ct, connecting two
different asymptotic states φ(±∞) = φ± with φ− 6= φ+.

The main goal stems in showing existence of a heteroclinic solution to the corre-
sponding second order differential equation

(a− τc2)
d2φ

dξ 2 + c
d

dξ

{
φ +σ

dW
du

(φ)

}
− dW

du
(φ) = 0, (2.4)

with boundary conditions φ(−∞) = φ−, φ(+∞) = φ+ where we assume, for defi-
niteness, φ− = 1 and φ+ = 0.

Equivalentlly, the second order differential equation (2.4) can be rewritten as
dφ

dξ
= ψ,

dψ

dξ
=

1
a− τc2

{
dW
du

(φ)− c
[

1+σ
d2W
du2 (φ)

]
ψ

} (2.5)

Next, assume 1+σW ′′(s)> 0 for any s under consideration, which is indeed satis-
fied if σ is sufficiently small. Multiplying by dφ/dξ , we deduce the identity
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d
dξ

{
1
2 (a− τc2)

(
dφ

dξ

)2

−W (φ)

}
+ c
[

1+σ
d2W
du2 (φ)

](
dφ

dξ

)2

= 0.

Thus, integrating in R, we infer

c =
W (0)−W (1)∫

R [1+σW ′′(φ)] (φ ′)2 dx
(2.6)

From this relation, it is readily observed that the speed c is strictly positive if and
only if W (1) < W (0). In particular, in the monostable case, φ− = 0 is a maximum
point and φ+ = 1 is a minimum for W and thus c is strictly positive. Differently,
in the bistable case, W is a double-well potential and thus the speed is positive or
negative depending on the depth difference W (0)−W (1) of the two wells located
at 0 and 1.

The starting point in proving existence of propagation fronts is the stability anal-
ysis of the singular points of (2.4), i.e. constant values ū with the property f (ū) = 0,
with respect to the ordinary differential system obtained by considering the traveling
wave ansatz where the speed c is, for the moment, an external parameter.

Linearizing at ū the second order differential equation (2.4), we infer
dφ

dξ
= ψ,

dψ

dξ
=

1
a− τc2

{
W ′′(ū)φ − c

[
1+σW ′′(ū)

]
ψ
}
.

(2.7)

The corresponding characteristic polynomial is

p(λ ; ū,c) :=
1

(a− τc2)

{
(a− τc2)λ 2 + c

(
1+σW ′′(ū)

)
λ −W ′′(ū)

}
.

Thus, setting

∆(ū,c) := c2{1+σW ′′(ū)
}2

+4(a− τc2)W ′′(ū)> 0, (2.8)

the two roots of p = p(·; ū,c) are

λ±(ū,c) =
−c{1+σW ′′(ū)}±

√
∆(ū,c)

2(a− τc2)
. (2.9)

Since they have opposite signs if W ′′(ū) > 0, the singular point (ū,0) is a saddle
point for (2.7). Differently, if W ′′(ū) < 0 (hence ū is unstable with respect to the
PDE), the two roots are either complex conjugates or both real with the same sign,
thus they define either a spiral or a node. Assuming 1+σW ′′(ū)> 0, the spiral and
the node are stable (or unstable, respectively) if c > 0 (or c < 0, resp.). Hence, the
heteroclinic orbit is a node/saddle connection in the case of Fisher–KPP equation
(monostable case) and a saddle/saddle connection in the case of the Allen–Cahn
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equation (bistable case) for both the parabolic (τ = 0) and the hyperbolic equations
(τ > 0), with relevant consequence in term of the multiplicity of the speeds c.

To fix idea, let us give a closer look to traveling waves with a monotone de-
creasing profile, that is φ− := 1 > 0 =: φ+. The opposite case can be deduced by
straightforward symmetry arguments.

For the node/saddle connection, the situation is rather complicated. First of all,
we have to restrict the attention to the regimes of the parameter c such that the
critical point is an unstable node, ruling out stable/unstable spirals and stable nodes.
For W ′′(ū) < 0, the discriminant ∆ , defined in (2.8), distinguishes whether the two
roots of the polynomial p are real or not. When strictly positive, such roots are real
and distinct and we search for intersection between the two-dimensional unstable
manifold of the critical point φ− = 1 at−∞ and the one-dimensional stable manifold
at φ+ = 0 at +∞. In term of dimensions, the situation is favourable. Additional
computations show that existence could be provided for a whole half-line of values
for the parameter c. For more details on the monostable case, we refer to [23] in the
parabolic case (i.e. σ = τ = 0) and to [6] for the case σ = τ > 0.

For the saddle/saddle connection, the one-dimensional manifold of the steady
state φ−= 1 has to intersect the stable manifold of the steady state φ+ = 0. Being the
system planar, the corresponding stable and unstable manifolds are one-dimensional
and the intersection of the two manifolds is non-generic, corresponding to the fact
that the speed c has to be appropriately tuned. This translates into the existence of a
specific value of the speed c∗ for which the heteroclinic connection emerges.

From now on, we restrict the attention to the bistable case with W (1) ≤W (0)
so that c ≥ 0, see formula (2.6), with the exception of some minor deviations from
the mainstream dedicated to the monostable case. In particular, we may restrict the
attention to the sub-characteristic regime, determined by the additional requirement
a− τc2 > 0.

Introducing the variable ζ := ξ/
√

a− τc2, equation (2.4) becomes simpler,
namely

d2φ

dζ 2 + γ
d

dζ

{
φ +σW ′(φ)

}
−W ′(φ) = 0, (2.10)

where
cτ :=

c√
a− τc2

. (2.11)

Equation (2.10) can be equivalently rewritten as the first order system
dφ

dζ
= ψ,

dψ

dζ
=W ′(φ)− cτ

{
1+σW ′′(φ)

}
ψ

(2.12)

with asymptotic conditions (φ ,ψ)(−∞) = (1,0) and (φ ,ψ)(+∞) = (0,0). A differ-
ent first order form for (2.10) is given by the Liénard form
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dφ

dζ
=−cτ

{
φ +σW ′(φ)

}
+χ,

dχ

dζ
=W ′(φ),

with asymptotic conditions (φ ,χ)(−∞) = (1,0) and (φ ,χ)(+∞) = (0,0).
The simplified form (2.12) for (2.4) is particularly convenient when passing from

local to global analysis, using the rotated vector field property of system (2.10). The
final statement relative to existence of propagating front is reported here, for readers’
convenience, as taken from [34].

Theorem 2.1 Let W be a double-well potential with local minima at 0 and 1. If
τ > 0, σ ∈ [0,τ] and 1+σW ′′(s) > 0 for any s ∈ [0,1], then there exists a unique
value c∗ ∈R such that the equation (2.4) has a monotone increasing solution φ with
asymptotic states φ(−∞) = 1 and φ(+∞) = 0.

2.3 Special cases with explicit propagation speeds

Next, we focus on three special cases for which an explicit formula is available.
The first one concerns with the case of two wells of equal depth. Next, we pass to
consider the specific case of a third order polynomial reaction term for which ex-
plicit formulas for both the standard parabolic equation and the damped hyperbolic
one can be determined. Finally, we discuss the case of a piecewise linear reaction
function with a jump located at some intermediate value α .

Two wells of equal depth

The case of a double-well potential W with wells of equal depth can be treated
separately, since (2.6) indicates that c∗ = 0, indipendently on the values of σ ≥ 0.

Proposition 2.1 Let τ ≥ 0 and σ ∈ [0,τ]. In addition, let f =−W ′ with W double-
well potential having wells located at 0 and 1 with W (0) = W (1). Then, equation
(2.2) supports monotone steady states connecting equilibria φ− = 1 and φ+ = 0.

Proof. We report here the standard proof for reader’s convenience. Substituting c =
0, equation (2.4) reduces to

a
d2φ

dξ 2 −W ′(φ) = 0,

Multiplying by the derivative dφ/dξ , we end up with the conservative form

d
dξ

{
a
2

(
dφ

dξ

)2

−W (φ)

}
= 0,



Analysis and numerics for hyperbolic reaction-diffusion models 19

which can be integrated. Then, we infer

dφ

dξ
=−

√
2/a ·

√
W (φ)−W (φ±), (2.13)

recalling that φ is monotone decreasing since φ+= 0 < 1 =φ−. Hence, among other
solutions, equation (2.13) defines implicitly the steady profile φ = φ(ξ ) by∫

φ(ξ )

φ(ξ0)

ds√
W (s)−W (φ±)

=
√

2/a(ξ0−ξ )

connecting φ−= 1 to φ+= 0 for any given ξ0 ∈ R. ut

As an example, let us consider the case f (u) = κ u(u− 1/2)(1− u). Since the
potential is given by W (u) = 1

4 κ u2(1−u)2, there holds

∫
φ(x)

1/2

2ds
s(1− s)

=
√

2κ/a(x0− x)

that gives

ln
(

φ(x)
1−φ(x)

)
=
√

κ/2a(x0− x).

Expliciting the value φ = φ(x), we obtain

φ(x) =
1

1+ e
√

κ
2a (x−x0)

(x0 ∈ R). (2.14)

As stated at the beginning, the propagation speed is c = 0.

Third-order polynomial reaction function

Next, we focus on the case c∗ > 0, which occurs, again by formula (2.6) for W (1)<
W (0). In the case of the third order polynomial

f (u) = κ u(u−α)(1−u) (2.15)

with κ > 0, this translates into the choice α ∈ (0,1/2).
To start with, let us focus on the limiting case σ = τ = 0, that is on the parabolic

reaction-diffusion equation

∂tu = a∂xxu+κu(u−α)(1−u). (2.16)

In such a case, there exist explicit formulas for both propagation speed c and front
profile φ . Indeed, let us set

dφ

dξ
=−Aφ(1−φ).
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for some constant A > 0. Since

d2φ

dξ 2 =−A(1−2φ)
dφ

dξ
= A2

φ(1−φ)(1−2φ),

inserting in (2.4) with σ = τ = 0 and simplifying the factor φ(1−φ), we infer

(κ−2aA2)φ +aA2− cA−κα = 0

which gives A =
√

κ/(2a) and

c = c0 :=
√

2aκ
( 1

2 −α
)
. (2.17)

Thus, the corresponding profile φ solves the Bernoulli equation dφ/dη =−φ +φ 2

where η = (κ/2a)1/2 ξ , which is explictly given by

φ(ξ ) =
1

1+ e
√

κ
2a (ξ−ξ0)

(ξ0 ∈ R),

which, incidentally, coincide with (2.14) when ξ = x.
When dealing with propagation fronts for (2.2) with σ = 0, that is

τ ∂ttu+∂tu = a∂xxu+ f (u),

a formula, corresponding to (2.17), can be provided. Indeed, equation (2.4) with σ =
0 coincide with the traveling wave equation for (2.16) where a has been replaced by
a− τc2. Thus, adding the subscript τ to c to give evidence to dependency, there
holds

cτ =
√

2(a− τc2
τ)κ ·

( 1
2 −α

)
.

Squaring and rearranging, we infer{
1+2κτ

( 1
2 −α

)2
}

c2
τ = 2aκ

( 1
2 −α

)2
,

and thus
cτ =

c0√
1+ τc2

0/a2
. (2.18)

where c0 is given in (2.17). There is a strict connection between relation (2.18) and
(2.11), being one the inverse of the other in the case a = 1. Specifically, relation
(2.18) goes beyond the special case of the cubic f , holding for general reaction
function. In particular, since 0≤ cτ < c0 for τ > 0, as shown by the inequality

cτ − c0

c0
=

1√
1+ τc2

0/a2
−1 < 0,
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the propagation phenomena is always slowed down when pure damping is added,
inertia being limited to the deceleration effect of the front.

When dealing with hyperbolic reaction-diffusion equation (2.2) with σ ∈ (0,τ]
and cubic f , to our knowledge, there is no available extension of the explicit for-
mulas (2.17) and (2.18). In particular, as it will be shown later on, the addition of
the relaxation term, i.e. σ = τ , the situation relative to the difference in propagation
speed can change in some regime of the parameter α ∈ (0,1).

Piecewise affine reaction function with a bistable shape

Finally, following the approach in [39], we compute explicit traveling wave solu-
tions for a very specific form for the reaction function f of bistable type. Specifi-
cally, we concentrate on a piecewise affine function given by

f (u) =

{
−mu u < α,

m(1−u) u≥ α.
m > 0, α ∈ (0,1), (2.19)

(see Fig.2). In such a special case, it is possible to provide an explicit expression
for both the traveling wave profile (φ ,ψ) and of its speed c also for the hyperbolic
model (2.4). Indeed, let us go back to (2.12) and rewrite it as

dφ

dξ
= ψ, (a− τc2)

dψ

dξ
= mφ − c(1+σm)ψ,

to be matched at φ = α with

dφ

dξ
= ψ, (a− τc2)

dψ

dξ
= m(φ −1)− c(1+σm)ψ.

Fig. 2 Graph of the function
f given in (2.19) with param-
eters m = 1 and α = 0.25.
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Since the two singular points are saddles, the matching amounts in choosing the
critical value of the parameter c such that the unstable manifold of the singular
point (0,0) intersects, at φ = α , the stable manifold of (1,0).

The directions of the unstable/stable manifolds are described by the eigenvectors
of the corresponding linearized equation. Hence, denoted by (φ̃ , ψ̃) the perturbation
of the equilbrium state (φ̄ ,0), they are given by the eigendirection of the matrix

A :=
1

a− τc2

(
0 a− τc2

m −c(1+σm)

)
In particular, this means that (φ ,ψ) belongs to the unstable/stable manifold if and
only if ψ̃ = λ±φ̃ , where λ± denote the (positive/negative) roots of the characteristic
polynomial

p(λ ) = det(A−λ I) =
1

a− τc2

{
(a− τc2)λ 2 + c(1+σm)λ −m

}
.

Specifically, the explicit values for λ± are

p(λ±) = 0 ⇐⇒ λ = λ± :=
−c(1+σm)±

√
∆(c)

2(a− τc2)

where the discriminant ∆ is

∆(c) := c2(1+σm)2 +4(a− τc2)m

=
[
(1−σm)2−4(τ−σ)m

]
c2 +4am,

which is strictly positive in the regime c2 < a/τ . Thus, the stable manifold of (0,0)
and the unstable manifold at (1,0) are given by ψ̃ = λ+φ̃ and ψ̃ = λ−φ̃ , that is

ψ = λ−φ and ψ = λ+(φ −1).

The two graphs intersect at φ = α if and only if |λ−|α = λ+(1−α). Recalling the
explicit formulas for λ− and λ+, the latter equality can be rewritten as√

∆(cex)(1−2α) = cex(1+mσ).

After some straightforward algebraic manipulations, we end up with

cex =

{
ma

(1+mσ)2α(1−α)+mτ(2α−1)2

}1/2

(1−2α). (2.20)

Comparing the speeds cex for a generic choice of parameters σ and τ and c0 for
σ = τ = 0 gives

cex

c0
=

{
α(1−α)

(1+σm)2α(1−α)+ τm(2α−1)2

}1/2
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Fig. 3 Exact value of the speed, as in (2.20), with a = m = 1 and σ = τ = 0 (dotted), σ = 0, τ = 1
(dashed), σ = τ = 1 (continuous).

For σ ∈ [0,τ], since α(1−α)< 1/4 for α 6= 1/2, there holds

α(1−α)

(1+mσ)2α(1−α)+mτ(2α−1)2 <
1

(1+mσ)2 +4mτ(2α−1)2 ≤ 1

with the equality holding if and only if τ = 0. Hence, in the same regime, it follows

cex− c0

c0
=

{
α(1−α)

(1+mσ)2α(1−α)+mτ(2α−1)2

}1/2

−1 < 0.

In particular, the (hyperbolic) propagation speed cex is always smaller than the cor-
responding (parabolic) speed c0 for any choice of the couple σ and τ . This could be
also recognised, observing directly that the value of cex, regarded as a function of σ

and τ , is strictly decreasing with respect to both variables.
Let us remark that, in such a case, the function f is discontinuous (increasing) at

the value u = α and, thus, the first derivative of f is, lousely speaking, equal to +∞.
In particular, the dissipativity condition 1−σ f ′ > 0 is never satisfied at such a point
whenever σ > 0, with dramatic consequences to be explored in the next Section.

3 Numerical computation of the propagation speed

From now on, we restrict the attention to two main cases corresponding to the
choices: σ = 0, τ > 0 and σ = τ > 0, reported here for reader’s convenience,

τ∂ttu+∂tu = a∂xxu+ f (u) (damping)
τ∂ttu+∂t {u− τ f (u)}= a∂xxu+ f (u) (relaxation)
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where f (u) = κ u(u−α)(1− u) with κ > 0 and α ∈ (0,1). Coherently with the
previous part of the paper, we focus on propagating waves connecting 1 at −∞

with 0 at +∞ in the case α ∈ (0,1/2], so that the speed cex is non-negative as a
consequence of the relation W (1)≤W (0), see identity (2.6).

3.1 Computation of the propagation speed

In the purely damped case, the explicit formula (2.18) for the propagation speed can
be used to assess the reliability of the so-called phase-plane algorithm, presented
in detail in the next subsection. On the other hand, when relaxation is taken into
account, there is no explicit formula for the velocity. Thus, an approximated version
of its value should be considered as furnished by some algorithm. Based on the tests
used in the damped case, we will consider as “exact” speed cex the ones provided by
the phase-plane algorithm (later on, denoted by cdu,θ ), and use it to test the capability
of two (dynamical) numerical schemes to provide genuine predictions.

Phase plane algorithm

As stated before, both singular points of the ODE system for traveling waves (2.5)
are saddles in the bistable case. As a consequence, both the corresponding un-
stable/stable manifold are one-dimensional. Therefore, the existence of a hetero-
clinic connection is equivalent to the fact that, for an appropriately tuned parameter
c = cex, the unstable curve exiting from the critical point (1,0) intersects the stable
curve entering the critical point (0,0). Based on the rotated vector field property, we
can perform a shooting-type argument and transform the problem of the existence
of a heteroclinic orbit into the search of a zero of a given function. Such a step can
be performed by preliminarily finding a reliable approximation of the solution to
an ordinary differential equation and then by means of a standard interval division
scheme, furnishing the exact value cex of the propagation speed.

To enter the details, we denote by v0 = v0(φ ,c), the stable manifold of (0,0) and
by v1 = v1(φ ,c) the unstable manifold of (1,0). Then, we look for two different
solutions of the first order equation

∂v
∂φ

=
dψ/dξ

dφ/dξ
=

1
a− τc2

{
1
ψ

dW
du

(φ)− c
[

1+σ
d2W
du2 (φ)

]}
(3.1)

with initial conditions along the stable/unstable manifold of (0,0)/(0,1).
Curves v0 and v1 are determined by choosing an initial datum on the correspond-

ing stable/unstable manifold as provided by the linearized operator at the two crit-
ical points. Namely, at ū, we compute the eigenvectors relative to the eigenvalues
λ± = λ±(ū;c) as given by (2.9). Then, we approximate the solutions v0 = v0(·,c)
and v1 = v1(·,c) with the ones defined by the initial data
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v0(ε,c) = λ−(0,c)ε and v1(1− ε,c) =−λ+(1,c)(1− ε)

for θ small enough and solving forward/backward (3.1) for v0/v1, respectively.
Denoting by v0 and v1 such approximations, we evaluate the difference function

h of v0 and v1 at u = α , that is

h(c) := v0(α,c)− v1(α,c),

for c ∈ (−
√

a/τ,
√

a/τ). It can be readily seen that

h(−
√

a/τ)< 0 < h(
√

a/τ).

Moreover, relying on the rotated vector field property, the function h is strictly in-
creasing in (−

√
a/τ,

√
a/τ) and, thus, it has a single zero, corresponding to the

value cex. The heteroclinic orbit corresponds to such a choice of the critical speed
cex such that h(cex) = 0, which is uniquely determined since the function h is strictly
monotone increasing,

Heuristic validation of the phase-plane algorithm in the purely damped case

Next, we compare the exact formula (2.18) in the case σ = 0, a = κ = 1, recalled
here for reader’s convenience, viz.

cex =

√
2 (1/2−α)√

1+2τ (1/2−α)2
,

with the approximated value cdu,ε provided by the phase-plane algorithm using the
value Edu,ε as measure of the relative error, defined by

Edu,ε :=
∣∣∣∣cdu,ε − cex

cex

∣∣∣∣ (3.2)

To start with, we learn from Fig.4 that there is numerical evidence of a scheme of
order 1 in the case τ = 1. Different values of τ , a and κ fits into the same scenery.

From this, we extrapolate the final (reliable) choices du = 10−5 and ε = 10−8.
The corresponding values for the exact formula cex, the approximated value cdu,ε
and the relative error Edu,ε , are reported in Table 1, for different values of the unsta-
ble zero α , chosen as a value in (0,1/2).

In the case σ ∈ (0,τ] for some τ > 0, to our knowledge, there is no explicit for-
mula for the case of the double-well potential W , given by (2.3). Hence, we consider
the speed approximation provided by the phase-plane algorithm with the values for
du and ε previously detected. From now on, for simplicity, we will denote cdu,ε by
cex and consider the relative errors with respect to such an approximated value.

To conclude, in Figure 5, we compare the values for the Allen–Cahn equation in
the standard parabolic case, in the hyperbolic case with damping, in the hyperbolic
case with relaxation. It is transparent that the role played in the latter is crucially
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Fig. 4 Case τ = a = κ = 1: graphs of the values of Edu,ε/du as a function of α ∈ (0,0.5) where the
relative error Edu,θ is given in (3.2) for ε = 10−8 and discretization step equal to different choices
of du: 10−2 (dotted), 10−3 (dotted-dashed), 10−4 (dashed), 10−5 (continuous).

Table 1 Case τ = a = κ = 1: values for cex, cdu,ε and Edu,ε relative to nine different choices of the
unstable zero α relative to the choices du = 10−5 and θ = 10−8.

α cex cdu,ε Edu,ε

0.05 0.5368950 0.5369038 1.64×10−5

0.10 0.4923660 0.4436135 1.53×10−5

0.15 0.4436070 0.4436135 1.48×10−5

0.20 0.3905667 0.3905724 1.45×10−5

0.25 0.3333333 0.3333382 1.45×10−5

0.30 0.2721655 0.2721695 1.46×10−5

0.35 0.2075143 0.2075174 1.47×10−5

0.40 0.1400280 0.1400300 1.45×10−5

0.45 0.0705346 0.0705356 1.43×10−5

different and it exhibits values α where the role of inertia is purely dissipative and
others values for which sustained propagation is present.

3.2 PDE-based algorithms to approximate the propagation speed

The aim of this Subsection is to compare the capability of two different PDE-based
algorithms to recover a reliable approximation of the speed of a front. The strategy
is different with respect to the one presented in Subsection 3.1 being of dynamical
nature, i.e. grounded on the preliminary determination of the numerical solution of
the underlying partial differential equation. Entering the details, we choose a scheme
for the PDE and solve it in the space interval [0,L], with zero-flux boundary condi-
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Fig. 5 Case τ = a= κ = 1: comparison of the graphs of the speeds: parabolic Allen–Cahn (dotted),
see (2.17); hyperbolic Allen–Cahn with damping (dashed), see (2.18); hyperbolic Allen–Cahn with
relaxation (continuous).

tions, in the time span [0,T ], corresponding to some initial datum. Then, choosing
two consecutive frames u(·,s) and u(·, t) with 0 < s < t, we look for a strategy fur-
nishing a scalar value c such that

u(x, t)−u(y,s)≈ φ(x− ct)−φ(y− cs).

The key point stems in reducing from two functions (i.e. the solution profiles) to a
single scalar value which should be able to describe, in principle, the overall propa-
gating characteristic of the wave.

We consider the three numerical schemes described in Subsection 1.3 (with the
kinetic algorithm limited to the relaxation case), freezing the data relative to the two
profiles u(·,s) and u(·, t) with 0 < s < t appropriately chosen. Then, we determine
an approximation of the speed by means of some suitably chosen algorithm.

Two main tools can be used to provide an estimate of the speed, the scout &
spot algorithm and the LeVeque–Yee formula, which we present in details in the
following paragraphs.

At this point, a word of caution is required. Indeed, the approximated expression
c = cdx,dt for the velocity is relative to the specific numerical scheme and, in addi-
tion to the scheme itself, it depends on both choices of space and time mesh sizes.
Also, the potential existence of a propagating front for the semi- and fully-discrete
schemes (not explored in this Chapter) is not necessarily related to the existence of
a continuous propagating front (sketched in this Chapter and rigorously proved in
[6, 22, 33, 34] for different types of hyperbolic reaction-diffusion equations). Re-
sults on the existence of parabolic reaction-diffusion traveling waves can be found
in [4, 30, 38, 49] for spatially-discrete schemes (sometimes referred to as “lattices”)
and in [11, 20, 24, 25] for the fully-discrete case. Moreover, discussions relative to
hyperbolic equations can be found in [7, 19]. For completeness, let us also men-
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tion that a corresponding exploration in the context of conservation laws, started in
[26, 37], can be found in [5, 45]. To our knowledge, a detailed scrutiny of existence
of propagating front for both semi- and fully-discrete schemes proposed in Subsec-
tion 1.3 is not currently available and we regard at it as a very interesting issue. In
any case, as shown in most of the previous references, it is reasonable to associate to
any convergent numerical scheme a number –coinciding with the “discrete” speed of
propagation– that could be regarded as an approximation of the exact velocity value
in the continuous setting under appropriate limiting behavior of the parabolic ratio
dt/dx2. Precisely, given one of the three numerical schemes to approximate the
hyperbolic reaction-diffusion equation (first-order, Liénard, kinetic) together with
one of the two possible algorithms to estimate the speed (scout&spot, LeVeque–
Yee, with details provided in the subsequent pages), we consider as a reliable error
measure the value

Escheme
∗ :=

∣∣∣∣cscheme
∗ − cex

cex

∣∣∣∣ ,
where, as stated before, cex coincides with cdu,θ with du = 10−5 and ε = 10−8 and
cscheme
∗ is the estimated value for the propagation speed. We anticipate that we are

going to compare the three schemes considering spatial and temporal mesh size
given, respectively, by dx = 10−1 and dt = 10−3, so that the ratio dt/dx2 has the
exact value 10−1 to be regarded as a “small number”.

Scout & spot algorithm

The first determines the speed of propagation considering a fixed level curve, say
θ , taking into account the fact that, whenever the solution u converges to the prop-
agating front φ , the relation u(x, t)≈ φ(x− ct) holds asymptotically in time, i.e. as
t→+∞. Let φ− < φ+ and fix a value θ ∈ (φ−,φ+) and consider two different time
instants, denoted here by t and s, such that u(x(s),s) = u(x(t), t) = θ , then

x(t)− ct ≈ φ
−1(θ)≈ x(s)− cs.

Hence, we deduce the approximation formula

c≈ x(t)− x(s)
t− s

. (3.3)

Translating such approximated rule in a definite algorithm is based on the introduc-
tion of a specific space mesh J = {x1, . . . ,x j} = {dx,2dx, . . . , jdx}. Assuming that
the profile un

j is strictly monotone increasing with respect to j, the first step consists
in considering the first value where the threshold θ is trespassed for any given time
tn, that is

n 7−→ jn(θ) := max{ j ∈ J : un
j < θ}.

Approximation formula (3.3) becomes
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cn,p
s&s = cn,p

s&s(θ) =
jn+p(θ)− jn(θ)

tn+p− tn · dx

=
[

jn+p(θ)− jn(θ)
]
· dx

pdt

(3.4)

Such procedure corresponds to a piecewise constant interpolation of the states un
j

and un
j+1. Moreover, the above formula shows that the propagation speed of slow

waves provided by such a level curve algorithm is “quantized”, that is any candidate
as limiting speed is an integer multiple of the positive value by dx/(pdt).

Applying such an algorithm requires a number of choices, which can be matter
of criticism, starting from the fact that the profile is expected to be monotone in-
creasing. Here, we choose θ = α , p = T/(2dt) so that the speed is approximated up
to an error of order dx/(pdt) = 10−2 in the case T = 50 and dx = 10−1.

LeVeque–Yee formula

The second strategy, inspired by [36], makes use of a spatial average of the profile
and it does not require any monotone assumption on the solution. Anyway, it is still
needed that the two asymptotic states, φ− at−∞ and φ+ at +∞, are different, i.e. the
connection has to be heteroclinic.

Let φ be a differentiable function with asymptotic states φ(±∞) = φ±. The
LeVeque–Yee formula takes advantage from the exact relation∫

R
{φ(x+h)−φ(x)} dx = h [φ ]

where [φ ] := φ+−φ−. The above formula can be proved by observing that∫
R
{φ(x+h)−φ(x)} dx = h

∫
R

∫ 1

0

dφ

dx
(x+θh)dθ dx

= h
∫ 1

0

∫
R

dφ

dx
(x+θh)dxdθ

= h
∫
R

dφ

dx
(x+θh)dx = h [φ ] .

Considering h equal to −cdt and assuming [φ ] 6= 0, the equality becomes

c =
1

[φ ] dt

∫
R
{φ(x)−φ(x− cdt)} dx.

Assuming that un
j is an approximation of φ(x j− ctn), we infer the estimate

c≈ cn,1
LY :=

1 · (un−un+1)

[φ ]
· dx

dt
=

1
[φ ] ∑j

(un
j −un+1

j ) · dx
dt

, (3.5)
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where 1 = (1, . . . ,1). Hence, the value cn can be considered as a space averaged
propagation speed, which is expected to stabilize when the approximation un con-
verges to the given asymptotic profile φ with constant velocity c.

3.3 Numerical experiments

Next, we intend here to compare the results produced by the two algorithms. In this
respect, we have to specify the initial datum which will be chosen in the class of
Riemann type, i.e. corresponding to the discontinuous function

u0(x) =

{
1 x < 0,
0 x > 0,

with v0 determined by the corresponding values obtained by setting ∂tu(x,0) = 0 in
the corresponding algorithm. Such choice is very natural, since we are looking for a
solution converging to the traveling front connecting the two stable state.

We focus on the case of the cubic bistable nonlinearity (2.15) with α ∈ (0,1),
with the goal of matching the values for the velocity c∗ as given by comparing the
values provided by the exact formula (2.18) in the case σ = 0 and τ = 1 and the value
provided by the shooting argument, as described in Subsection 3.1. For sakeness of
simplicity, we limit ourselves to the case a = κ = 1.

We numerically solve the corresponding PDE in the space interval [0,L] –with
zero-flux boundary conditions– in the time span [0,T ], where we consider the case
L = 50, T = 20 with spatial mesh dx = 10−1 and time discretization dt = 10−3.

Finally, to quantify the error of the estimates we use the standard quantity

E∗ :=
∣∣∣∣cn,p
∗ − cex

cex

∣∣∣∣ ,
where ∗ ∈ {s&s,LY} and p = 1 if ∗= LY.

Allen–Cahn equation with damping

Here, we compare the exact formula for the propagation speed (2.18) with the ap-
proximated estimates obtained by applying in series one of the two scheme (first-
order and Liénard) and, after that, the scout&spot algorithm (3.4) and the LeVeque–
Yee formula (3.5). The results are summarized in Table 2, relatively to three different
choices of the intermediate (unstable) zero α .

It is transparent the higher precision of the LeVeque–Yee formula (3.5) which add
to the number of free parameters to be chosen in the scout&spot algorithm (such as
the level θ , the value of p...), making the use of the latter strategy less effective.

Next, we pass to analyze the Allen–Cahn equation with a piecewise linear reac-
tion function with a jump point located at u = α . In this case, the crucial problem
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Table 2 Allen–Cahn equation with damping and polynomial reaction function, see (2.15): val-
ues of α and cex = cex(α), together with the different numerical scheme, corresponding speed
estimates and relative errors.

α cex = cex(α) scheme s&s Es&s LY ELY

0.125 0.4685213 first-order 0.47 3.16×10−3 0.4682076 6.69×10−4

Liénard 0.46 1.82×10−2 0.4662342 4.88×10−3

0.250 0.3333333 first-order 0.34 2.00×10−2 0.3331151 6.55×10−4

Liénard 0.33 1.00×10−2 0.3310495 6.85×10−3

0.375 0.1740777 first-order 0.17 2.34×10−2 0.1739747 5.92×10−4

Liénard 0.17 2.34×10−2 0.1715496 1.45×10−3

is, of course, the presence of a discontinuity in the source term. Thus, we compare
the capability of the scout&spot algorithm and the LeVeque–Yee formula. The re-
sults, obtained by using the same numerical data previously described, are reported
in Table 3. As can be appreciated from the values, the error is always of the order of
1%, which is largely acceptable.

Table 3 Allen–Cahn equation with damping and piecewise affine reaction function, see (2.19):
Values of α and cex = cex(α), together with the different numerical scheme, corresponding speed
estimates and relative errors.

α cex = cex(α) scheme s&s Es&s LY ELY

0.125 0.9149914 first-order 0.90 1.64×10−2 0.9021793 1.40×10−2

Liénard 0.90 1.64×10−2 0.9006799 1.56×10−2

0.250 0.7559289 first-order 0.74 2.11×10−2 0.7496325 8.33×10−3

Liénard 0.74 2.11×10−2 0.7484820 9.85×10−3

0.375 0.4588315 first-order 0.45 1.92×10−2 0.4557922 6.62×10−3

Liénard 0.46 2.55×10−3 0.4554450 7.38×10−3

As shown by the numerical results, also the case of a discontinuous reaction
function can be handled by both algorithms, with slightly better error estimates for
the LeVeque–Yee formula (which is also very easy to implement).

Allen–Cahn equation with relaxation

Finally, we consider the case of the hyperbolic Allen–Cahn equation with relaxation,
that is (2.2) with σ = τ > 0 (fixed equal to 1, for simplicity) for the third order
polynomial reaction function, given by (2.15). In such a case, in addition to the first-
order and Liénard schemes, we may also apply the kinetic scheme, also presented
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in Subsection 1.3. A selection of the results are collected in Table 4 and confirm the
same conclusion as above: with the same space-time grid, the LeVeque–Yee formula
is to be preferred, since it guarantees greater precision in speed approximation.

Table 4 Values of α and cex = cex(α), together with the different numerical schemes, speed esti-
mates and relative errors.

α cex = cex(α) scheme s&s Es&s LY ELY

0.125 0.5342843 first-order 0.53 8.02×10−3 0.5335445 1.38×10−3

Liénard 0.53 8.02×10−3 0.5318317 4.59×10−3

kinetic 0.54 1.07×10−2 0.5347508 8.73×10−4

0.250 0.3754283 first-order 0.38 1.22×10−2 0.3750573 9.88×10−4

Liénard 0.37 1.45×10−2 0.3728276 6.93×10−3

kinetic 0.38 1.22×10−2 0.3758528 1.13×10−3

0.375 0.1941490 first-order 0.19 2.14×10−2 0.1940086 7.23×10−4

Liénard 0.19 2.14×10−2 0.1913620 1.44×10−3

kinetic 0.19 2.14×10−2 0.1943773 1.18×10−3

Other numerical experiments have been performed with different choices of p
and better precision for the estimate of the scout&spot algorithm, providing a cor-
risponding higher order of precision of the LeVeque–Yee formula, which appear
again as a more precise tool. Comparing the three types of scheme –first-order re-
duction, Liénard, kinetic– the first two have some very poor resolution of the equa-
tion for short time, in particular when considered in relation with the third one.
Spurious oscillations are generated by both the schemes due to the presence of a
discontinuity in the initial datum. Differently, the kinetic algorithm is capable of
reproducing the correct behavior also in the short time (see [32, 33] for more nu-
merical simulations). Nevertheless, we stress that the latter is much slower with
respect to the other two. Thus, computing the propagation speed –which is a param-
eter relevant for the large-time behavior– the short time behavior is of secondary
importance with respect to the capability of the scheme of being capable to repro-
duce the main features of the model in the long run, once the evolution has already
solved the initial problem of the presence of a jump. This is particularly crucial be-
cause of the presence of the reaction term which, in large part of the space, pushes
the solutions to stay close to stable solution of the underlying ODE.

The case of the piecewise affine reaction function, described in the last paragraph
of Subsection 2.3, is harder to be simulated, since the numerical schemes of Sub-
section 1.3 are not well-behaved in the presence of discontinuous reaction function
due to the presence of the term τ f (u) differentiated with respect to time. Numeri-
cal deficiencies arise already when performing simulations of the PDE, inherited by
the jump of the reaction function f , probably due to the fact that the dissipativity
condition 1− τ f ′ > 0 is never satisfied at α whenever τ > 0, At the moment, we
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are not aware of any numerical schemes which is capable of performing reliable
simulations in presence of discontinuities.

Acknowledgements Simulations have been performed by SCILAB 6.0.2, https://www.scilab.org/.
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