Dettagli sull'Insegnamento per l'A.A. 2017/2018
Nome:
Stochastic Processes / Stochastic Processes
Informazioni
Crediti:
: Laurea Magistrale in Ingegneria Informatica e Automatica 6 CFU (c)
Erogazione:
Laurea Magistrale in Ingegneria Informatica e Automatica 1st anno curriculum Generale Elective
Laurea Magistrale in Ingegneria Informatica e Automatica 1st anno curriculum Automatica Elective
Laurea Magistrale in Ingegneria Informatica e Automatica 1st anno curriculum Informatica Elective
Lingua:
Inglese
Prerequisiti
Probability theory (probability spaces, conditional probability, independence, product spaces, random variables and their distributions, expectation, convergence, limit theorems for sequences of random variables), real analysis, basics on measure theory and Lebesgue integral, basics on discrete times markov chains
Obiettivi
The course aims to give an introduction to the theory of stochastic processes with special emphasis on applications and examples. On successful completion of this module the students should become familiar with some of the most known classes of stochastic processes (such as martingales, markov processes, diffusion processes) and to acquire both the mathematical tools and intuition for being able to describe systems with randomness evolving in time in terms of a probability model and to analyze it charcterizing some of its properties
Descrittori di Dublino
Alla fine del corso, lo studente dovrebbe
- have knowledge of language, basic concepts and techniques of the Theory of stochastic processes, have knowledge and understanding of some relevant classes of processes (Markov processes, Martingales, Diffusions) and their properties, have knowledge and understanding of tha main mathematical tools and results on Stochastic calculus and be aware of its potential applications
- be able to identify, analyse and prove relevant properties of models based on stochastic processes, be able to solve problems related to such models
- evaluate the possible approaches to modeling a system with randomness using a stochastic process, be able to select the most appropriate one, to discuss its fundamental futures and to compare it with other models
- demonstrate ability to describe complex systems and problems in a probabilistic way, explain them in terms of stochastic dynamics, to illustrate and give rigorous proofs of their main features
- demonstrate capacity for reading and understanding texts and research papers on related topics
Modalità d'esame
Written and oral exam.
Aggiornamenti alla pagina del corso
Le informazioni sulle editioni passate di questo corso sono disponibili per i seguenti anni accademici:
Per leggere le informazioni correnti sul corso, se ancora erogato, consulta il catalogo corsi di ateneo.
Ultimo aggiornamento delle informazioni sul corso: 09 febbraio 2018, 11:07