

Università degli Studi di L'Aquila - Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica Course catalogue

Page compiled on 19/09/2019

Programme of Module "Analisi Funzionale (Istituzioni di Analisi Superiore mod.1)"		
 Code: DT0026 Type of course unit: Compulsory (Bachelor Degree in Mathematics curriculum Generale) Level of course unit: Undergraduate Degrees Semester: 1 		
Number of ects credits: (Bachelor Degree in Mathematics) 6 (workload 150 hours)		
Teachers: Margherita Nolasco (nolasco@univaq.it)		
1	Course objectives	Learn the fundamental structures of Functional Analysis. Get familiar with the main examples of functional spaces, in particular with the theory of Hilbert spaces and Lebesgue spaces. Get familiar with the basic notions of operator theory. Be able to frame a functional equation in an abstract functional setting.
2	Course content and learning outcomes (dublin descriptors)	 Topics of the module include: Lebesgue Measure and Integration L^p Spaces Basic of Topological Vector Spaces, Normed and Banach Spaces, Linear Operators and linear functionals. Hilbert Spaces Weak topology, Weak * topology, weak compactness Applications of Baire Category in Functional Analysis: Uniform Boundedness, Open Mapping, Closed Graph, Inverse Mapping. Banach and Hilbert adjointness, self-adjointness Compact Operators Riesz Fredholm spectral theory On successful completion of this module, the student should : Understand the theory Be able to solve problems Help to choose appropriate graduate studies Practice mathematical reasoning, organize topics in logical order, connect theory to applications, elaborate independent proofs. Improve unconventional thinking. Get the math language to study more advanced textbooks and attend research oriented courses
3	Course prerequisites	Mathematical Analysis (not only Calculus) in one and several space variable, Linear Algebra (including abstract Vector Speces), Set Topology (including Compact Spaces) and Metric Spaces, Ordinary differential equations.
4	Teaching methodsand language	 Classical traditional XX century blackboard teaching (no fancy modern technology) Language: Italian Reference textbooks Haim Brezis, <i>Functional analysis, Sobolev spaces and partial differential equations.</i> Universitext. Springer, New York, 2011. E. Kreyszig, <i>Introductory Functional Analysis with applications</i>. Wiley. 1978. R.L. Wheeden A. Zygmund, <i>Measure and Integral</i>. CRC Press, 1977. M. Reed, B.Simon, <i>Methods of modern mathematical physics. I. Functional analysis. Second edition.</i> Academic Press, New York, 1980. W. Rudin, <i>Real and complex analysis.</i>. Mc Graw Hill.
5	Assessment methods	Written test.