Publication list

From IRIS

 

[48] D. Amadori, M. Colangeli, A. Correa, L. Rondoni
Exact Response Theory and Kuramoto dynamics
Physica D, 2021, to appear

 

[47] D. Amadori, C. Christoforou

BV solutions for a hydrodynamic model of flocking--type with
all-to-all interaction kernel
, 2021

Abstract: We consider a hydrodynamic model of flocking-type with all-to-all interaction kernel in one-space dimension and establish global existence of entropy weak solutions to the Cauchy problem for any BV initial data that has finite total mass confined in a bounded interval and initial density uniformly positive therein. In addition, under a suitable condition on the initial data, we show that entropy weak solutions admit time-asymptotic flocking.

 

[46] D. Amadori, F. Aqel

On the decay in W1,∞ for the 1D semilinear damped wave equation on a bounded domain
Discrete and Continuous Dynamical Systems, 2021

 


[45] D. Amadori, E. Dal Santo, F. Aqel

Decay in L for the damped semilinear wave equation on a bounded 1d domain
Proc. HYP2018, Theory, Numerics and Applications of Hyperbolic Problem (2020), 231-238

[44] D. Amadori, E. Dal Santo, F. Aqel

Decay of approximate solutions for the damped semilinear wave equation on a bounded 1d domain
J. Math. Pures Appl. 132 (2019), 166-206

 

[43] D. Amadori, J. Park
Emergent Dynamics for the Kinetic Kuramoto Equation

In: Klingenberg C., Westdickenberg M. (eds) Theory, Numerics and Applications of Hyperbolic Problems I. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 236 (2018), pp. 43-58. Springer, Cham

 


[42] D. Amadori, S.-Y. Ha, J. Park
On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation
J. Differential Equations 262 (2017), 978-1022


[41] D. Amadori, S.-Y. Ha, J. Park
A nonlocal version of wave-front tracking motivated by the Kuramoto-Sakaguchi equation

In: Innovative Algorithms and Analysis, Springer INdAM Series (2017), 1-24

 

[40] D. Amadori, L. Gosse
Stringent error estimates for one-dimensional, space-dependent 2x2 relaxation systems
[preprint version]

Ann. Inst. H. Poincaré (C) Anal. Non Linéaire 33 (2016), 621-654

 

[39] D. Amadori, P. Baiti, A. Corli, E. Dal Santo
A hyperbolic model of two-phase flow: global solutions for large initial data
Bull. Braz. Math. Soc. (N.S.) 47(1), 65-75 (2016)


[38] D. Amadori, P. Baiti, A. Corli, E. Dal Santo
Global existence of solutions for a multi-phase flow: a drop in a gas-tube
J. Hyper. Differential Equations 13, 381 (2016)


[37] D. Amadori, L. Gosse
Error Estimates for Well-Balanced and Time-Split Schemes on a locally Damped Semilinear Wave Equation
Math. Comp. 85 (2016), 601-633


[36] D. Amadori, L. Gosse

Error Estimates for Well-Balanced Schemes on Simple Balance Laws. One-Dimensional Position-Dependent Models
SpringerBriefs in Mathematics, 2015

 

[35] D. Amadori, P. Baiti, A. Corli, E. Dal Santo
Global weak solutions for a model of two-phase flow with a single interface
[preprint version]  Journal of Evolution Equations 15 (2015), 699-726

 

[34] D. Amadori, P. Baiti, A. Corli, E. Dal Santo
Global existence of solutions for a multi-phase flow: A bubble in a liquid tube and related cases
Acta Mathematica Scientia 35 (2015), 832-854

 

[33] D. Amadori, P. Goatin, M.D. Rosini

Existence results for Hughes' model for pedestrian flows,

J. Math. Anal. Appl. 420 (2014), 387-406

 


[32] D. Amadori, A. Corli

Solutions for a hyperbolic model of multi-phase flow
ESAIM: Proceedings 40 (2013), 1-15


[31] D. Amadori, L. Gosse
Transient L^1 error estimates for well-balanced schemes on non-resonant scalar balance laws
J. Differential Equations 255 (2013), 469-502


[30] D. Amadori, R.M. Colombo, G. Guerra, W. Shen

Slow Erosion of Granular Flow: Continuous and Discontinuous Profiles

Proc. HYP2012, pp. 641-649


[29] D. Amadori, A. Corli

Glimm estimates for a model of multiphase flow

 

[28] D. Amadori, G.M. Coclite
A note on positive solutions for conservation law with singular source
Proceedings of the American Mathematical Society 141 (2013), 1613-1625


[27] D. Amadori, M. Di Francesco
The one-dimensional Hughes model for pedestrian flow: Riemann--type solutions
Acta Mathematica Scientia 32 (1) (2012), 259-280

 

[26] D. Amadori, W. Shen
An Integro-Differential Conservation Law arising in a Model of Granular Flow
Journal of Hyperbolic Differential Equations 9 n.1 (2012), 105-131

 

[25] D. Amadori, W. Shen
Front Tracking Approximations for Slow Erosion
Discrete and Continuous Dynamical System-A 32 n.5 (2012), 1481-1502

 

[24] D. Amadori, W. Shen

The Slow Erosion Limit in a Model of Granular Flow
Arch. Ration. Mech. Anal.199 (2011), 1-31


[23] D. Amadori, W. Shen
A Nonlocal Conservation Law from a Model of Granular Flow

In: Tatsien Li and Song Jiang. Hyperbolic Problems - Theory, Numerics and Applications.

Beijing, P.R. China, 15-19 giugno 2010, vol. 1, p. 265-272 (HYP2010 Proceedings)


[22] D. Amadori, W. Shen
Mathematical aspects of a model for granular flow

      In:

IMA Volumes in Mathematics and its Applications 153,

Nonlinear Conservation Laws and Applications, 169-180 (2011), Springer.

Editors: A.Bressan, G-Q.Chen, M.Lewicka and D.Wang

 

[21] D. Amadori, W. Shen
A Hyperbolic Model for Granular Flow

      In

Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena,

Contemporary Mathematics 526 (2010), Amer. Math. Soc., Providence, RI, 1-18


[20] D. Amadori, A. Corli

Global existence of BV solutions and relaxation limit for a model of multiphase reactive flow, Nonlinear Analysis 72 (2010), 2527-2541


[19] D. Amadori, A. Corli
Global solutions for a hyperbolic model of multiphase flow

Proceedings of Symposia in Applied Mathematics 67, Part 1 (2009), 161-173


[18] D. Amadori, W. Shen

Global Existence of Large BV Solutions in a Model of Granular Flow,

Comm. Partial Differential Equations 34 (2009), 1003-1040


[17] D. Amadori, A. Corli
On a model of multiphase flow
SIAM J. Math. Anal.40 (1) (2008), 134-166


[16] D. Amadori, S. Ferrari, L. Formaggia
Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels
Netw. Heterog. Media 2 (1) (2007), 99-125


[15] D. Amadori, A. Corli
A hyperbolic model of multi-phase flow
Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the 11^ International Conference on Hyperbolic Problems held in Lyon, 2006, 407-414

 
[14] D. Amadori

Homogenization of conservation laws with oscillatory source and non-oscillatory data
Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the 11^ International Conference on Hyperbolic Problems held in Lyon, 2006, 299-306


[13] D. Amadori, D. Serre
Asymptotic behavior of solutions to conservation laws with periodic forcing
J. Hyperbolic Differ. Equ. 3 (2) (2006), 387-401


[12] D. Amadori

On the homogenization of conservation laws with resonant oscillatory source
Asymptot. Anal. 46 (1) (2006), 53-79


[11] D. Amadori, L. Gosse, G. Guerra
Godunov-type approximation for a general resonant balance law with large data
J. Differential Equations 198/2 (2004), 233-274


[10] D. Amadori, L. Gosse, G. Guerra
Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws
Arch. Ration. Mech. Anal. 162 (2002), 327-366


[9] D. Amadori, G. Guerra
Uniqueness and continuous dependence for systems of balance laws with dissipation
Nonlinear Anal. TMA 49 (2002), 987-1014


[8] D. Amadori, G. Guerra

Global BV solutions and relaxation limit  for a system of conservation laws

Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 1-26


[7] D. Amadori, G. Guerra

(On) Global weak solutions for systems of balance laws

Appl. Math. Lett. 12 (1999), 123-127

 


[6] D. Amadori, P. Baiti, P.G. LeFloch, B. Piccoli

Non-Classical Shocks and the Cauchy Problem for Nonconvex Conservation Laws


J. Differential Equations 151 (1999), 345-372


[5] D. Amadori, R.M. Colombo

Viscosity Solutions and Standard Riemann Semigroup for Conservation Laws with Boundary Rend. Sem. Mat. Univ. Padova 99 (1998), 219-245


[4] D. Amadori, R.M. Colombo

Continuous Dependence for 2x2 Conservation Laws with Boundary

J. Differential Equations 138 (1997), 229-266


[3] D. Amadori

Initial-boundary value problems for systems of conservation laws

NoDEA 4 (1997),  1-42


[2] D. Amadori,

Unstable Blow-up Patterns

Diff. and Integral Equations 8 (1995), 1977-1996


[1] D. Amadori, C. Parenti

A Class of Hyperbolic Operators with Double Characteristics

Comm. Partial Differential Equations 19 (1994), 1185-1201

Borse PON - Dottorato in Matematica e Modelli

Graduatoria di ammissione per 2 borse PON - XXXVII CICLO (17 Novembre 2021) ...

Bando Erasmus+ Tirocinio – a.a. 2021/22

Bando di mobilità Internazionale Erasmus+ ai fini di tirocinio – a. a. 2021/2022 Scadenza del bando:  8 novembre 2021 - ore ...

Street Science 2021

Street Science 2021: PROGRAMMA ...

Utilizziamo i cookie per offrirti il ​​nostro servizio. Continuando a utilizzare questo sito acconsenti al nostro utilizzo dei cookie come descritto nella nostra policy.